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ABSTRACT

Instruction selection, whereby input code represented in an interme-
diate representation is translated into executable instructions from
the target platform, is often the most target-dependent component
in optimizing compilers. Current approaches include pattern match-
ing, which is brittle and tedious to design, or search-based methods,
which are limited by scalability of the search algorithm. In this pa-
per, we propose a new algorithm that first abstracts the target plat-
form instructions into high-level uber-instructions, with each uber-
instruction unifying multiple concrete instructions from the target
platform. Program synthesis is used to lift input code sequences
into semantically equivalent sequences of uber-instructions and
then to lower from uber-instructions to machine code. Using 21
real-world benchmarks, we show that our synthesis-based instruc-
tion selection algorithm can generate instruction sequences for a
hardware target, with the synthesized code performing up to 2.1×
faster as compared to code generated by a professionally-developed
optimizing compiler for the same platform.
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gineering; Compilers; Software performance.

KEYWORDS

Instruction selection, program synthesis, compiler optimizations

ACM Reference Format:

Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib Kamil,
and Alvin Cheung. 2022. Vector Instruction Selection for Digital Signal
Processors using Program Synthesis. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22), February 28 – March 4, 2022, Lausanne,
Switzerland. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3503222.3507714

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507714

1 INTRODUCTION

We have witnessed the rise of hardware accelerators across dif-
ferent application domains. These accelerators, such as the Qual-
comm Hexagon DSP [10] that is now found on-die in millions of
Android mobile phones, offer domain-specific optimization for ap-
plications, such as performance improvement and energy savings
as compared to general processors. However, to fully utilize such
accelerators, applications must either be written against libraries
or exotic instruction intrinsics provided by the accelerator, or in a
domain-specific language (DSL) altogether.

While mapping computations from programmer expressions into
a sequence of processor instructions can be formulated as instruction
selection as part of program compilation, choosing the optimal se-
quence of instructions for a given computation is especially difficult
when considering vector instructions, which enable fine-grained
parallel computation. Modern vector instruction sets, such as In-
tel’s AVX-512 and VNNI, ARM’s Advanced SIMD, or Hexagon’s
HVX, offer a rich set of complex vector instructions. These include
lane-parallel vector instructions such as single-instruction multiple-
data (SIMD) instructions, non-isomorphic instructions that apply
different operations to different lanes of the input vector in parallel,
cross-lane vector instructions that implement reductions such as
dot-products, and sliding window instructions that use intersecting
sets of input vector lanes to compute the output values in parallel.

Fully exploiting these instructions is difficult for compilers. Most
approaches (such as LLVM [16] and Halide [22]) utilize some vari-
ant of pattern-matching rewrites, which transform templatized
sequences of operations into hardware-specific vector instructions.
Indeed, Halide utilizes its own matching machinery, consisting of
ad-hoc patterns and rewrites built by programmers experienced in
writing code for each specific hardware backend, due to LLVM’s
inability to fully exploit complex vector instruction sets such as
Hexagon’s HVX. While work has been done to enhance LLVM’s
library of patterns [8, 23], matching-based approaches in general
suffer from the limitations of the underlying greedy algorithm to
match code patterns and thus can miss rewriting opportunities.
Meanwhile, prior work that formulates instruction selection as dy-
namic programming [15] or exhaustively enumerates instruction
sequences up to a fixed length guided by a cost model [17, 24]
struggle to scale to large input instruction sequences, or require
complex cost models to make the search efficient.
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In this paper, we describe Rake, a system that leverages program
synthesis to perform instruction selection for vectorized Halide
expressions. Unlike prior work, Rake does not rely on manually
crafted code patterns to match on the input code. Given an input
code sequence represented in the Halide IR, Rake instead synthe-
sizes a sequence of target platform instructions that is provably
semantically equivalent to the input. Rake first uses synthesis to lift
the input code sequence into an intermediate representation (IR).
This IR, called Uber-Instruction IR, is a high-level abstracted ver-
sion of the target instruction set. Once lifted, Rake then lowers the
Uber-Instruction IR into the concrete syntax of the target instruc-
tion set using synthesis. Lowering is done incrementally by first
synthesizing a combination of hardware intrinsics that performs
the computation while ignoring any data movement operations (a
swizzle-free sketch).

Once the swizzle-free sketch is synthesized, the data movement
(i.e., swizzle) instructions are concretized via another synthesis
query, and the finished sequence of instructions is grafted back into
the Halide IR. Rake makes it possible to integrate backend-specific
rewrites into a domain-specific compiler without explicitly specify-
ing transformation rules or their priority order. Instead, compiler
developers only need to specify the semantics of the target instruc-
tions, modifying the Uber-Instruction IR if necessary, and Rakewill
then synthesize target instruction sequences automatically. As our
experiments show, Rake’s synthesis-driven “lift-then-lower” ap-
proach makes instruction selection scalable, without compromising
the quality of the generated code.

To summarize, our key contributions are:

• A methodology that decomposes instruction selection for
mixed vector/scalar IR into a series of tractable program syn-
thesis queries, by searching for high-level Uber-Instructions,
then lowering to sketches without data movement opera-
tions, and finally synthesizing the required data movement.
• An implementation of our methodology within the Halide
DSL compiler and evaluation using real-world benchmarks.1

We evaluate Rake by using it to generate code for the HVX accel-
erator and show that Rake-generated code can produce speedups
of up to 2.1× over that generated by the existing Halide and LLVM
HVX pipeline (which has been developed and tuned by Qualcomm,
Google, and LLVM developers), as Rake finds instruction sequences
that are not considered by the existing Halide pattern-matching
rules and the instruction selection pass in LLVM.

Next, we give background on the Halide domain-specific com-
piler and describe how Rake works in three phases: lifting to the
Uber-Instruction IR (§3), swizzle-free sketch synthesis (§4), and
swizzle synthesis (§5). Then, in §7 we show the efficacy of Rake
using 21 real-world benchmarks.

2 BACKGROUND & OVERVIEW

In this section, we give an overview of the entire compilation pro-
cess illustrated in Figure 1, while providing background on the
methodologies underlying Rake’s synthesis-based instruction se-
lection algorithm.

1Source code available at https://github.com/uwplse/rake/

Figure 1: Compilation Overview. Rake intercepts Halide’s

compilation pipeline to synthesize device-specific implemen-

tations for vector expressions.

We implement Rake within Halide [22], a domain-specific lan-
guage for computations on images and dense tensors. Halide en-
ables programmers to concisely describe the algorithm they wish to
implement separately from details of how that algorithm should be
executed. This separation between algorithm and schedule allows
the compiler to generate optimized code for CPUs, GPUs, and DSPs
from the same algorithm specification. Halide enjoys wide adoption
in industry, including usage by Google, Adobe, and others [21].

2.1 Motivating Example

The Sobel filter [20] is a well-known algorithm used in image pro-
cessing and computer vision for approximating the gradient of an
image intensity function. This approximation is particularly useful
in edge-detection algorithms.

Figure 2 shows an implementation of the Sobel filter2 expressed
in Halide. To compile this algorithm for a given architecture, Halide
requires a schedule that describes high-level device-specific opti-
mizations, such as how to tile and vectorize the loops in the output
program. Lines 18 to 21 specify a Halide schedule for compiling
the Sobel filter to the Hexagon DSP architecture [10]. The sched-
ule directs Halide to offload the computation to Hexagon, prefetch
data into the cache two iterations before it is needed, and compute
the output in tiles of 4×128 elements. The schedule also directs
Halide to vectorize the inner x-loop. Since the schedule specifies
no directives for any of the intermediate results, such as sobel_x
or sobel_y, by default Halide will inline their computation. Thus,
after all scheduling is applied, the lowered program in Halide IR is
a single tiled loop-nest, where the body of the inner-most loop com-
putes a 1×128 element tile of the output using a target-independent
vector-expression, shown in Figure 3.

Once the program is lowered into Halide’s IR, the next step
is code-generation. Currently, Halide relies on two mechanisms
to map Halide’s IR to machine instructions: for most operations,
Halide uses LLVM’s built-in vector types and operations, but in addi-
tion, the Halide compiler uses a pattern-matching pass (the Device-
Specific Optimizer in Figure 1) to rewrite sequences of Halide IR
operations into calls to LLVMbackend-specific intrinsics. This trans-
formation is essential for obtaining performance on architectures

2This implementation obtained from the Halide repository is a modified version that
does not take the square root of the gradient.
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1 void sobel3x3(Buffer<uint8_t> input, Buffer<uint8_t> output) {
2 Var x, y, xi, yi;
3 Func in16, x_avg, y_avg, sobel_x, sobel_y;
4
5 // The Algorithm
6 in16(x, y) = cast<uint16_t>(input(x, y));
7
8 x_avg(x, y) = in16(x-1, y) + 2 * in16(x, y) + in16(x+1, y);
9 sobel_x(x, y) = absd(x_avg(x, y-1), x_avg(x, y+1));
10
11 y_avg(x, y) = in16(x, y-1) + 2 * in16(x, y) + in16(x, y+1);
12 sobel_y(x, y) = absd(y_avg(x-1, y), y_avg(x+1, y));
13
14 output(x, y) = cast<uint8_t>(clamp(sobel_x(x, y)
15 + sobel_y(x, y), 0, 255));
16
17 // The schedule
18 output.hexagon()
19 .prefetch(input, y, 2)
20 .tile(x, y, xi, yi, 128, 4)
21 .vectorize(xi);
22 }

Figure 2: The Sobel Filter expressed in Halide.

1 // Syntax guide:
2 // - uint8x128(...) and uint16x128(...) are vector casts
3 // - x128(c) broadcasts scalar c to a 128-lane vector
4 // - input(x,y) denotes a 1024-bit vector load from location (x,y)
5 // - min, max, absd (absolute difference), + and * are vector ops
6
7 uint8x128(
8 max(
9 min(
10 absd(
11 uint16x128(input(x - 1, y - 1)) +
12 uint16x128(input(x, y - 1)) * x128(2) +
13 uint16x128(input(x + 1, y - 1)),
14 uint16x128(input(x - 1, y + 1)) +
15 uint16x128(input(x, y + 1)) * x128(2) +
16 uint16x128(input(x + 1, y + 1))
17 )
18 +
19 absd(
20 uint16x128(input(x - 1, y - 1)) +
21 uint16x128(input(x - 1, y)) * x128(2) +
22 uint16x128(input(x - 1, y + 1)),
23 uint16x128(input(x + 1, y - 1)) +
24 uint16x128(input(x + 1, y)) * x128(2) +
25 uint16x128(input(x + 1, y + 1)),
26 ),
27 x128(0)),
28 x128(255)))

Figure 3: Target-independent Halide IR vector expression

produced by the Sobel filter algorithm.

like Hexagon, where LLVM fails to automatically discover map-
pings from generic LLVM IR to semantically-rich backend vector
instructions such as those in the HVX ISA.

While Halide’s pattern-matching approach is fast, it is also brittle.
If a program fragment could map to an HVX-specific instruction,
but doesn’t conform to the pre-written patterns, Halide will use
lower-performing generic vector instructions. This leaves valuable
performance on the table. Figure 4 highlights three instances in the
Sobel filter benchmark where Halide’s pattern-matching approach
fails to discover the best instruction sequence. In (a), Halide uses
the more general vmpa (sum of two widening multiplies) and vadd
instructions to implement the 3-point horizontal convolution. This
computation can be implemented more efficiently as a single vtmpy
instruction (sliding-window-sum of two widening multiplies with

an additional accumulation). In (b), although the vtmpy instruction
is not applicable as this expression does not implement a sliding-
window reduction, we can replace the vmpa and vadd instructions
with a single vmpa.acc instruction (a variant of vmpa that accumu-
lates into the target register). Finally, in expression (c), Halide fails
to infer that the min and cast operations on an unsigned input can
be replaced by a single saturate operation. In contrast, Rake can
discover all three optimizations without the need for any re-write
rules, resulting in a 27% runtime performance improvement over
Halide’s existing optimizer.

2.2 Instruction Selection using Rake

As illustrated in Figure 1, Rake intercepts Halide’s compilation
pipeline after the input program has been lowered to Halide’s IR
and all scheduling optimizations, including vectorization, have been
applied. Rake then extracts the set of vectorized expressions found
in the lowered program and uses program synthesis to discovermap-
pings from Halide IR to backend-specific intrinsics using program
synthesis. Rake decomposes the instruction selection problem into
multi-step program synthesis by first lifting the input expressions
to high-level Uber-Instructions before lowering. Rake lowers uber-
instruction sequences into executable instructions by synthesizing
the computational instructions followed by data movement guided
by a simple, explainable cost model. Together, these strategies en-
able Rake to scale up to large loop bodies, rather than the scale of a
few instructions as in prior superoptimizers [19, 24]. Finally, Rake
patches the lowered program, replacing target-independent Halide
IR vector expressions with optimized target-aware instruction se-
quences.

In the remainder of this section, we first provide a primer on
program synthesis and then explain Rake’s instruction selection
algorithm.

2.2.1 Program Synthesis & Verification. Rake relies on syntax-
guided program synthesis (SyGuS) [4] to map expressions from
Halide IR to the target ISA. Syntax-guided synthesis is a search-
based technique for constructing programs. As input, it takes a
set of semantic constraints known as the specification as well as
a set of syntactic constraints, which we refer to as the grammar.
As output, it generates programs or expressions from the gram-
mar that satisfy the semantic constraints. We can formulate the
instruction-selection problem as a SyGuS problem as follows:

∃ 𝑒𝑡 ∈ 𝒢 . 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑒𝑡 ) = 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑒𝑜 )

The synthesizer must find an expression 𝑒𝑡 in the target ISA ex-
pressed using the grammar 𝒢, such that the output of 𝑒𝑡 is equiva-
lent to the output of the original Halide IR expression 𝑒𝑜 . In Rake,
the search for equivalent expressions is performed via inductive
program synthesis [4, 26, 27], which utilizes satisfiability modulo
theories (SMT) to guide the search. In this technique, a synthesizer
queries the SMT solver to find a candidate equivalent program that
holds over a small number of example input/output pairs. Then,
the SMT engine is re-queried to either prove the equivalence holds
over all inputs, or produce a counterexample input, in which case
this input is added to input-output pairs and the SMT solver is once
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Halide IR Expr Halide Codegen (HVX) Rake Codegen (HVX)

(a) uint16x128(input(x - 1, y + 1)) +
uint16x128(input(x, y + 1)) * x128(2) +
uint16x128(input(x + 1, y + 1))

/* Latency: 4, Loads: 3 */
vmpa( // 2-multiply-add
input(x, y + 1),
input(x + 1, y + 1),
0x2, 0x1) +

vzxt(input(x - 1, y + 1))

/* Latency: 2, Loads: 2 */
vtmpy( // Sliding window 3-point reduction
input(x - 1, y + 1),
input(x, y + 1),
0x1, 0x2)

(b) uint16x128(input(x - 1, y - 1)) +
uint16x128(input(x - 1, y)) * x128(2) +
uint16x128(input(x - 1, y + 1))

/* Latency: 4 */
vmpa( // 2-multiply-add
input(x - 1, y),
input(x - 1, y + 1),
0x2, 0x1) +

vzxt(input(x - 1, y - 1)))

/* Latency: 3 */
vmpa.acc( // 2-multiply-add accumulate
vzxt(input(x - 1, y - 1)),
input(x - 1, y),
input(x - 1, y + 1),
0x2, 0x1)

(c) uint8x128(
max(
min(
absd(...) +
absd(...),
x128(0)),

x128(255)))

/* Latency: 11 */
vshuffeb( // Extract lower byte
vmax(
vabsdiff(...) + vabsdiff(...),
vsplat(255)),

vmax(
vabsdiff(...) + vabsdiff(...),
vsplat(255)))

/* Latency: 9 */
vsat( // Saturate
vabsdiff(...) + vabsdiff(...),
vabsdiff(...) + vabsdiff(...))

Figure 4: An illustration of key differences in the HVX code generated by Halide’s current optimizer and Rake for the Sobel

filter. We do not count broadcasts of loop-invaraint expressions towards latency, as they will be moved outside the loop by

LLVM.

1 (narrow
2 (vs-mpy-add
3 '((abs-diff
4 (vs-mpy-add (load-data) '(2 1 1) #f uint16)
5 (vs-mpy-add (load-data) '(2 1 1) #f uint16))
6 (abs-diff
7 (vs-mpy-add (load-data) '(2 1 1) #f uint16)
8 (vs-mpy-add (load-data) '(2 1 1) #f uint16)))
9 '(1 1) #f uint16)
10 #t #f uint8)

Figure 5: The Sobel filter expression lifted to HVX uber-

instructions.

again re-queried, continuing the search. In order to prove observa-
tional equivalence between expressions, SMT engines require an
interpreter for the target ISA instructions.

The primary hurdle to using program synthesis for instruction
selection is scalability. To effectively translate large expressions,
often requiring dozens of vector-intrinsics to implement, Rake
breaks down the instruction selection process into three stages.

2.2.2 Lifting to Uber-Instruction IR. Rake begins the instruction
selection process by lifting the input Halide IR expressions (such
as the one shown in Figure 3) into a target-specific IR of uber-
instructions, which we call the Uber-Instruction IR.

The Uber-Instruction IR is a condensed version of the target ISA,
where each uber-instruction unifies a set of related intrinsics in
the target ISA by implementing the common higher-level compute
pattern. For example, Figure 5 shows the expression encountered in
the Sobel filter (Figure 3) expressed using the uber-instructions de-
rived from the HVX ISA. The vs-mpy-add uber-instruction unifies
all available HVX intrinsics that implement vector-scalar multiply-
add patterns, such as vadd (addition), vmpy (widening multiply) or
vmpa (sum of two widening multiples). Similarly, the set of HVX
intrinsics that downcast integer values in the input vector to a nar-
rower integer type are consolidated into an uber-instruction called

(define (narrow vec saturate? round? outT)
(let a (if round? (round vec) vec))
(if saturate? (sat_cast<outT> a) (cast<outT> a)))

(define (abs-diff vec0 vec1)
(- (max vec0 vec1) (min vec0 vec1)))

(define (vs-mpy-add vec weights saturate? outT)
(let a (if saturate? (cast<int64> vec) (cast<outT> vec)))
(let b (convolve a weights))
(if saturate? (sat_cast<outT> b) b))

Figure 6: A sample of HVX uber-instructions.

narrow. Figure 6 shows pseudo-code describing the semantics of
HVX uber-instructions that appear in Figure 5.

The translation from Halide IR to Uber-Instruction IR is per-
formed using a bottom-up enumerative synthesis algorithm (de-
scribed in §3) that lifts the lower-level Halide IR to the higher-level
Uber-Instruction IR. The lifting algorithm attempts to rewrite the
input expressions using the fewest number of uber-instructions
possible. This, in effect, clusters operations in the input expression
that implement a single high-level compute pattern by rewriting
them into an uber-instruction. Rake then synthesizes target ISA im-
plementations for the lifted expression by lowering the sequence of
uber-instructions into a sequence of target ISA instructions. Lifting
expressions to Uber-Instruction IR makes synthesis-based instruc-
tion selection scalable in two ways. First, it breaks the synthesis
problem down to easier sub-problems since larger expressions re-
quire many uber-instructions to implement, and the algorithm
builds the sequence of uber-instructions bottom-up. Second, for
each uber-instruction only a subset of the target ISA is relevant, so
we can specialize the grammar to just those instructions.

2.2.3 Lowering to the Target ISA. In the second stage of instruction
selection, Rake uses a recursive backtracking algorithm, listed in
Algorithm 2, to lower the lifted expressions to the target ISA. Given
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1 (??swizzle
2 (vtmpy (??load [vec-pair? #t]), 1, 2)
3 [vec-pair? #t])

Figure 7: A swizzle-free sketch of an HVX expression. Data-

movement is abstracted away using ??load and ??swizzle.

1 (let [x (vtmpy
2 (vcombine
3 (vread (- x 1) (- y 1))
4 (vread (+ x 1) (- y 1)))
5 1, 2)]
6 (vshuffvdd (hi x) (lo x) -2))

Figure 8: Synthesized data movement replaces ??load and

??swizzle to yield complete HVX implementations.

an expression 𝑒 in the Uber-Instruction IR, Rake first recursively
lowers each sub-expression to the the target ISA (Lines 5 to 7).
Then, Rake uses the lowered sub-expressions 𝒮 as building-blocks
to synthesize ℐ , the lowered implementation for 𝑒 . We explain
Rake’s lowering algorithm in more detail in §4 and §5.

Despite the incremental approach outlined above, synthesizing
efficient vector implementations remains challenging. The best im-
plementations often involve an interweaving of data-movement (i.e.,
loading/storing data across memory hierarchies or re-arrangement
of vector lanes into different permutations) and computation (op-
erations that produce new values) to exploit intrinsics that offer
the greatest throughput. Directly synthesizing such implementa-
tions is expensive due to the sheer number of candidates that can
be enumerated. Therefore, Rake first synthesizes a swizzle-free
sketch 𝜏 of the output expression. A swizzle-free sketch is a partial
implementation of the input expression in the target ISA that spec-
ifies the computation concretely using intrinsics from the target
ISA but abstracts away the necessary data movement using special
placeholder terms. For example, consider the lifted multiply-add
expression from line 4 of Figure 5. Figure 7 shows a valid swizzle-
free sketch for this expression. The computations performed by the
sketch (multiplications, additions and widening-casts) are imple-
mented using intrinsics from the HVX ISA, such as vtmpy (3-point
fused widening-multiply-add), but the loading and swizzling of
data are expressed abstractly using special constructs ??load and
??swizzle. In §4, we define the semantics of the constructs used
by Rake to represent data movement in swizzle-free sketches and
explain how Rake uses them to verify partial implementations for
correctness during synthesis. At a high level, these allow instruc-
tions in a swizzle-free sketch to load data from anymemory location
or vector lane in a register without needing to reason about the
cost or sequence of data movement operations required.

2.2.4 Synthesizing DataMovement. Once a valid swizzle-free sketch
is synthesized, Rake attempts to complete the implementation by
synthesizing the missing data movement. Figure 8 shows a com-
plete implementation synthesized using the sketch from Figure 7.
Each ??load and ??swizzle term has been replaced by a sequence
of vector-reads and HVX shuffling instructions (such as vcombine
and vshuffvdd) to yield a fully lowered HVX expression.

3 DYNAMIC EXPRESSION DECOMPOSITION

Synthesizing low-level device-specific expressions from IR code is
an expensive task. For example, the relatively simple IR expression

Input: An expression in the Halide IR
Output: An equivalent expression in the Uber-Instruction IR

1 Function Lift(𝑒)
2 𝒮 ← { Lift(se) | 𝑠𝑒 ∈ Subexprs(e) }
3 for 𝑠 ∈ 𝒮 do

4 if ℓ ← UpdateInstr(s, e) ≠ 𝑢𝑛𝑠𝑎𝑡 then return ℓ

5 for 𝑠 ∈ 𝒮 do

6 if ℓ ← ReplaceInstr(s, e) ≠ 𝑢𝑛𝑠𝑎𝑡 then return ℓ

7 return ExtendExpr(𝒮, 𝑒)

Algorithm 1: Lifting expressions from Halide IR to the
Uber-Instruction IR.

found in the Sobel filter (Figure 3) requires a sequence of 38 HVX in-
trinsics to implement. On top of that, the HVX ISA offers hundreds
of intrinsics to choose from at every step when building the se-
quence. Prior work attempted to scale synthesis to large instruction
sets by constraining the length of the input instruction sequence
considered at each step [5, 19]. Other prior work attempted to scale
the input instruction sequence length by carefully extracting a di-
rected acyclic graph (DAG) of operations to consider with a single
output [23] while restricting the scope of the target instructions to
middle-end IR rather than concrete instructions. While these strate-
gies are effective, they have mostly been applied to scalar code (or,
in the case of [23], directly to LLVM IR); vectorized code introduces
not just a larger variety of potential instructions but additional
complications due to potentially needing swizzling between oper-
ations. The goal of Rake is to scale synthesis to input sequences
sufficiently large enough to optimize real-world code, as well as
scaling reasoning to handle a large, complex vector instruction set.

3.1 Lifting to Uber-Instruction IR

In modern ISAs, the number of high-level compute patterns im-
plemented is typically much smaller than the number of intrinsics
offered; many intrinsics can be viewed as specializations of a more
general compute pattern. An uber-instruction is a function that im-
plements one such high-level compute pattern and therefore consol-
idates the semantics of many related intrinsics in the target ISA. The
Uber-Instruction IR is simply a collection of all uber-instructions
manually derived from the target ISA. To make synthesis scalable,
Rake re-writes large input expressions as a sequence of the derived
uber-instructions, before lowering each uber-instruction incremen-
tally. In §6, we discuss the key design concerns when designing the
Uber-Instruction IR for a given target ISA, and how we derived the
set of uber-instructions for the HVX ISA.

3.2 Lifting Algorithm

Rake uses a bottom-up enumerative search algorithm, listed as
Algorithm 1, to lift expressions from the Halide IR to the Uber-
Instruction IR. Given a Halide IR expression 𝑒 , Rake first recursively
lifts each sub-expression of 𝑒 to the Uber-Instruction IR (Line 2).
Then, Rake applies a sequence of update, replace and extend steps
to the set of lifted sub-expressions (𝒮) to construct the lifted repre-
sentation of 𝑒 .

3.2.1 Update. In the update step, Rake tries to lift the input ex-
pression by updating the inputs to an instruction in one of the lifted
sub-expressions. Suppose 𝑒 is the input expression in Halide IR and
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Step Halide Expr Lifted Sub-Exprs Rule Lifted Expr

1 cast<uint16_t>(input(x-1, y-1)) ∅ Extend (widen (load-data) int16)

2 cast<uint16_t>(input(x, y-1)) ∅ Extend (widen (load-data) int16)

3 2 ∅ Extend (broadcast 2)

4 cast<uint16_t>(input(x+1, y-1)) ∅ Extend (widen (load-data) int16)

5 cast<uint16_t>(input(x, y-1)) * 2 [(widen (load-data) int16),
broadcast(2)]

Replace
(vs-mpy-add (load-data)
[kernel: '(2)]
[saturating: #f]
[output-type: int16])

6 cast<uint16_t>(input(x-1, y-1)) +
cast<uint16_t>(input(x, y-1)) * 2

[(widen (load-data) int16),
(vs-mpy-add (load-data)
[kernel: '(2)] [saturating: #f]
[output-type: int16])]

Update
(vs-mpy-add (load-data)
[kernel: '(2 1)]
[saturating: #f]
[output-type: int16])

7
cast<uint16_t>(input(x-1, y-1)) +
cast<uint16_t>(input(x, y-1)) * 2 +
cast<uint16_t>(input(x+1, y-1))

[(widen (load-data) int16),
(vs-mpy-add (load-data)
[kernel: '(2 1)] [saturating: #f]
[output-type: int16])]

Update
(vs-mpy-add (load-data)
[kernel: '(2 1 1)]
[saturating: #f]
[output-type: int16])

. . . . . . . . . . . . . . .

Figure 9: An illustration of how Rake uses bottom-up program synthesis to lift the Sobel filter to the Uber-Instruction IR.

𝒮 is the set of sub-expressions of 𝑒 lifted to the Uber-Instruction
IR. Then, for each 𝑠 ∈ 𝒮 , We formulate the following query to the
SMT solver:

∃ 𝑖 ∈ 𝑠. 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑒) = 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑠 [𝑖 → 𝑖′])

We want to check if there exists an uber-instruction 𝑖 in the sub-
expression 𝑠 , such that updating the parameters to 𝑖 makes the
output of 𝑠 and the output of 𝑒 equal. For instance, if 𝑖 is the narrow
uber-instruction, we may update the saturate? flag to also per-
form saturation while narrowing.

3.2.2 Replace. The replace step is similar to the update step, except
that instead of updating an instruction, Rake attempts to replace
an instruction with a different uber-instruction:

∃ 𝑖 ∈ 𝑠. 𝑗 ∈ UberIR. 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑒) = 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑠 [𝑖 → 𝑗 ])

We want to check if there exists an uber-instruction 𝑖 in the sub-
expression 𝑠 , such thatwhenwe replace 𝑖 with another uber-instruction
𝑗 , the output of 𝑠 and 𝑒 are equal.

3.2.3 Extend. Finally, if neither update or replace steps are suc-
cessful, Rake lifts 𝑒 by extending the lifted sub-expressions with a
new uber-instruction:
∃ 𝑖 ∈ UberIR. 𝑠0, ..., 𝑠𝑛 ∈ 𝒮 . 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑒) = 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑖 (𝑠0, ..., 𝑠𝑛))

3.2.4 Demonstrative Example. Figure 9 illustrates the lifting pro-
cess for the Sobel filter expression in Figure 3. For brevity, we do not
show the numerous synthesis queries that are 𝑢𝑛𝑠𝑎𝑡 and instead
focus on the successful queries to demonstrate how the lifted expres-
sion evolves. Steps 1, 2, 3 and 4 show the base case for the recursive
algorithm. Since there are no vector sub-expressions for leaf nodes,
Rake extends the expression by adding a new uber-instruction. Step
5 shows an application of the replace step: by replacing the uber-
instruction widen with the uber-instruction vs-mpy-add, Rake is
able to construct an equivalent expression without increasing the
total number of uber-instructions. Finally, steps 6 and 7 demon-
strate applications of the update rule: additional sum operations
can simply be folded into the existing vs-mpy-add instruction by

updating the weight matrix. The weight matrix for the vs-mpy-add
instruction specifies both the length of the multiply-add pattern, as
well as the scalar weights.

Rake’s lifting algorithm greedily folds each new Halide IR op-
eration encountered during the bottom-up traversal into the exist-
ing Uber-Instruction IR expression. As a result, it may not always
discover the Uber-Instruction IR representations with the fewest
number of instructions. However, the greedy approach is scalable
as each synthesis query attempts to add or modify at most a single
uber-instruction.

4 ABSTRACTING DATA MOVEMENT

When lowering an expression fromUber-Instruction IR to the target
ISA, Rake first synthesizes a swizzle-free sketch that expresses the
computation using target ISA intrinsics, while abstracting away all
data movement. The goal of synthesizing this sketch is to simplify
the synthesis problem by identifying sequences of compute intrin-
sics that produce the correct output while assuming all required
data is present in registers in the correct layout required for each
instruction. To prove the correctness of a swizzle-free sketch, it is
sufficient to show that there exists a sequence of loads and swizzles
for which the sketch produces the correct output. Identifying the
most optimal set of data movement instructions in the target ISA
can be deferred until a correct sketch is found. Therefore, when
synthesizing a swizzle-free sketch, we introduce two additional
constructs to the search grammar that are used to represent data
movement: ??load and ??swizzle.

Figure 10 shows the definitions of ??load and ??swizzle op-
erations in pseudo-code. The ??load operation implements the
initial loading of data from memory into a vector register or vector
register pair. There are three inputs to the ??load operation: (1)
the set of data values read from memory by the input expression
(live-data), (2) a boolean flag indicating whether the operation
loads a vector or a vector-pair (vec-pair?) and (3) the required
type for elements in the output vector (elemT). The ??load oper-
ation then returns a symbolic vector (or vector-pair), where each
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(define (??load live-data elemT vec-pair?)
(𝜆 (i) (choose* ;; The synthesizer can pick any value from the

;; live-data set after filtering
(filter (𝜆 (v) (eq? (type v) elemT)) live-data))))

(define (??swizzle exprs elemT vec-pair?)
(𝜆 (i) (choose* ;; The synthesizer can pick any value from exprs

;; after filtering
(filter (𝜆 (v) (eq? (type v) elemT)) (get-vals exprs)))))

Figure 10: Definition of ??load and ??swizzle.

lane of the vector holds one of the live data values of the requested
element type. A symbolic vector encodes the set of all possible vec-
tors (of the requested type) that can be constructed from swizzling
live data. This allows the synthesizer to concretize the symbolic
vector into any one of its possible values, allowing us to represent
all possible swizzling patterns. The ??swizzle operation similarly
implements the re-arrangement of data produced by one or more
sub-expressions. Instead of returning a symbolic vector of data read
from memory, it returns a symbolic vector populated with data
produced by sub-expressions.

4.1 Verifying Sketches

In order to prove the validity of a candidate swizzle-free sketch,
Rake must select a concrete instantiation for each symbolic vector
produced by the ??load and ??swizzle operations, such that the
output of the overall expression matches the output of the input
expression we are trying to lower. The verification problem can be
formally specified as follows:

∃ 𝑣0, . . . , 𝑣𝑛 . ∀𝑖 ∈ 𝑙𝑎𝑛𝑒𝑠. 𝑖𝑛𝑝𝑢𝑡 [𝑖] = 𝑠𝑘𝑒𝑡𝑐ℎ[𝑖]

where 𝑣0, . . . , 𝑣1 represent the concrete instantiations for each sym-
bolic vector.

The amount of work a synthesizer must do to find concrete
instantiations for each vector is proportional to the number of
lanes in that vector since the synthesizer must pick a value to
populate each lane. As vectors grow larger (HVX vectors have up
to 128 lanes), this becomes expensive. Additionally, more lanes
in the output vector generally mean the set of live-data values to
choose from is also larger. Fortunately, both of these challenges can
be addressed by verifying incrementally for each lane of the output
vector. For instance, we can simplify the verification query to only
verify for the first lane of the vector:

∃ 𝑣0, . . . , 𝑣𝑛 . 𝑖𝑛𝑝𝑢𝑡 [0] = 𝑠𝑘𝑒𝑡𝑐ℎ[0]

The synthesizer must now only instantiate lanes of the symbolic
vectors 𝑣0, . . . , 𝑣𝑛 that are required to compute the first lane of
the overall output. While such a query does not guarantee the
sketch is correct, it allows Rake to quickly reject obviously incorrect
sketches, since if the two expressions produce unequal outputs
for the first lane of the vector, the sketch cannot be correct. The
more expensive verification query is then reserved for swizzle-free
sketches that pass this initial pruning step.

5 SYNTHESIZING SWIZZLES

Once a valid swizzle-free sketch is found, Rake synthesizes an
implementation to replace each ??load or ??swizzle operation in

Input: An expression in the uber-instruction IR
Output: An equivalent expression in the target ISA

1 Function Lower(𝑒, ℓ)
2 ℐ ← 𝑛𝑢𝑙𝑙 ⊲ Best lowered implementation

3 𝛽 ←∞ ⊲ Expression cost upper-bound

4 for 𝑠𝑙 ∈ SubexprLayouts(𝑒, ℓ) do

5 𝒮 ← ∅ ⊲ Set of lowered sub-exprs

6 for 𝑠𝑒 ∈ Subexprs(e) do

7 𝒮 ← 𝒮 ∪ Lower(se, sl)

8 while 𝜏 ← SynthesizeSketch(𝑒, 𝒮, 𝛽) ≠ 𝑢𝑛𝑠𝑎𝑡 do

9 𝜐 ← InferCost(𝜏)

10 if 𝜀 ← SynthesizeSwizzles(𝑒, 𝜏, ℓ, 𝛽 − 𝜐) ≠ 𝑢𝑛𝑠𝑎𝑡 then

11 ℐ ← 𝜀

12 𝛽 ← InferCost(𝜀)

13 return ℐ

Algorithm 2: Lowering expressions from the Uber-
Instruction IR to the target ISA.

the sketch. The synthesis problem can be formulated as follows:
∀ 𝑣0, . . . ,𝑣𝑛 ∈ 𝜏 . ∃ 𝑒0, . . . , 𝑒𝑛 ∈ 𝒢𝑠𝑤 .

𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝜏 [𝑣𝑖 → 𝑒𝑖 ]) = 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 (𝑒)

For all symbolic vectors in the sketch 𝑣0, . . . , 𝑣𝑛 (each representing
an abstract swizzle), we search for swizzle expressions 𝑒0, . . . , 𝑒𝑛
constructed using the grammar of swizzle intrinsics 𝐺𝑠𝑤 in the
target ISA, such that replacing the symbolic vectors with the swizzle
expression still produces the correct output. In practice, Rake will
not try to replace all abstract swizzles at once, but do so one at a
time.

5.1 Backtracking and Intermediate Data

Layouts

The incremental approach described thus far for lowering expres-
sions from Uber-Instruction IR to the target ISA, although scalable,
runs the risk of introducing inefficiencies in the final implementa-
tion.

Sub-optimal Sketches. The most efficient swizzle-free sketches
do not necessarily yield the most performant implementations.
The cost overhead of the required data movement may outweigh
the benefit of using fewer compute instructions. To address this,
we introduce backtracking to our lowering algorithm, shown in
Algorithm 2. Whenever a lowered implementation 𝜖 is synthesized
for the input expression, Rake updates the expression cost upper
bound 𝛽 (initially set to infinite) and then backtracks to synthesize
another implementation. With each new implementation, the cost
upper bound is tightened until a better implementation cannot be
found.

Intermediate Data Layouts. Since Rake builds the output expres-
sions bottom-up by lowering one uber-instruction at a time, the
lowered sub-expressions are verified against sub-expressions in
the input lifted expressions. This is problematic since it forces low-
ered sub-expressions to produce their output in the same layout
as the input lifted sub-expressions. For example, since the HVX
vtmpy intrinsic produces deinterleaved output, the implementa-
tion in Figure 8 interleaves the output produced by the intrinsic
to undo the implicit deinterleaving. However, if the expression be-
ing lowered is producing an intermediate output, then it may be
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beneficial to not interleave the output for two reasons: 1) just as
how vtmpy produces deinterleaved output, other instructions down
the pipeline may interleave the output, thus eliminating the need
to do the swizzle at all, 2) even if the swizzle is required, it may
be less expensive to do it later. For example, it is much cheaper to
swizzle the output of a large reduction than to swizzle all of its
inputs. To address this concern, we parameterize our lowering algo-
rithm over the data layout ℓ of the output we wish to lower to. This
allows Rake to synthesize a variety of lowered implementations for
each sub-expressions, each producing different permutations of the
same intermediate output. For HVX, we consider interleaved and
deinterleaved layouts since HVX instructions only perform these
permutations implicitly. Simpler ISAs that do not have implicit data
movement in compute instructions may not require this step.

6 IMPLEMENTATION

Rake’s core synthesis algorithm is implemented in Racket, using
the Rosette 4.0 framework [27] with z3 [11] as the back-end solver.
We’ve also added C++ code inside Halide to extract qualifying
Halide IR expressions and compile them to Racket syntax. We have
also implemented within Halide an S-Expression parser to convert
the S-Expressions synthesized by Rake back to Halide IR. Finally,
we manually implemented an interpreter (in Racket) for both the
HVX intrinsics provided by LLVM as well as the derived uber-
instructions.

Deriving Uber-Instruction IR. The quality of code generated by
our lift-then-lower approach is sensitive to the design of the Uber-
Instruction IR used. For instance, if the uber-instructions are too
general (coarse Uber-Instruction IR), the set of ISA instructions
that need to be enumerated when lowering an uber-instruction can
get large. This in turn makes synthesis slow or at times intractable.
On the other hand, if the uber-instructions are too low-level, there
can be many different ways to express the input expression in the
Uber-Instruction IR and very few ways to lower the lifted represen-
tation down to the target ISA. Our instruction-selection algorithm
then effectively becomes a greedy instruction selector, which can
easily generate sub-optimal implementations since it explores a
very small subspace of all possible implementations. The goal is to
design an Uber-Instruction IR coarse enough for the greedy lifting
algorithm to find the correct representation, yet not so coarse that
lowering becomes intractable. To derive the set of uber-instructions
for HVX, we identified clusters of intrinsics that had related or over-
lapping semantics. This was fairly straightforward since the HVX
documentation already lists similar instructions together. Then,
we manually defined an uber-instruction that implemented the
common higher-level compute pattern. The uber-instructions were
designed such that each intrinsic in the target ISA was expressible
by at least one uber-instruction. For example, we can express the
HVX vector-addition intrinsic vadd using the vs-mpy-add uber-
instruction, since addition is simply a multiply-add with multiplica-
tive weights of (1 1) (that is, a multiply-add where each input is
first multiplied by 1 then added together).

Cost Model. Our implementation uses a variation of instruction-
count to estimate the cost of an HVX expression. Since HVX has
multiple hardware resources (such as multiply, shift or permute)

and different instructions can execute on different hardware re-
sources within the same cycle, we count the number of instructions
per resource and take the maximum of the computed values. This
biases our cost model towards implementations that distribute the
computation across resources.

Extending to other ISAs. At a high-level, extending Rake to a new
target ISA requires implementing an interpreter for the available
intrinsics in Racket, along with designing and implementing an ap-
propriate Uber-Instruction IR. Preliminary results from our efforts
to extend Rake to ARM Neon instructions suggest that the set of
uber-instructions derived for HVX can be re-used for ARM with
only slight modifications. This is rather unsurprising since both
ARM and HVX target the same high-level compute patterns for
fixed-point arithmetic. Furthermore, we were able to automatically
generate a large portion of the required ARM Neon interpreter by
leveraging Halide’s ARM-specific code optimization rules. These
re-write rules, originally intended to map Halide IR expressions
to ARM instructions, can be used to map each ARM instruction
to an equivalent Halide IR expression, which Rake can already
interpret. For some backends, interpreters can be automatically
generated from the pseudo-code provided in the documentation, as
demonstrated by Vegen [8] for Intel x86 SIMD instructions.

In general, we believe our algorithm is suitable for target back-
ends that, similar to HVX, have a large number of instructions
containing many variants of relatively few compute patterns. In
contrast, backends that expose only a small number of very distinct
instructions would not benefit much from our approach.

7 EVALUATION

We evaluate Rake using a suite of 21 benchmarks, listed in Table 1.
The benchmarks consist of open-source applications taken from
the Halide repository as well as sample Halide programs provided
in the Hexagon Software Development Kit (SDK) v3.5.2. These
benchmarks, summarized below, span a range of image processing,
computational photography, computer vision and machine learning
workloads.

• Image Processing. Our test suite includes image processing
operations, implementing fundamental operations such as
blurs (box blur, gaussian blur, median filter), edge detection
(Sobel filter), image dilation and general 3×3 convolutions.
For Gaussian blur, we include implementations for three dif-
ferent radii: 3, 5 and 7. For general convolutions, we include
implementations for both 16-bit and 32-bit accumulators.
• Machine Learning. This subset contains Halide implemen-
tations of core Tensorflow operations, including normaliza-
tion layers (l2norm, softmax), elementwise layers (add, mul),
pooling layers (average_pool, max_pool), reduction (mean),
fully connected layers, and convolutional layers (conv, depth-
wise_conv).
• Camera Pipeline. This is the Frankencamera pipeline [1] for
processing raw data from an image sensor into a color image.
The pipeline performs hot-pixel suppression, demosaicking,
color correction, gamma correction, and contrast.
• Matrix Multiplication. This benchmark implements quan-
tized matrix-multiplication of two unsigned 8-bit matrices.
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Figure 11: Speedups for Rake over the default Halide HVX

backend. Across the 22 benchmarks, Rake improves per-

formance by an average of 18% over the existing highly-

optimized backend, which has been developed over years

by Qualcomm and Google engineers.

For all benchmarks, we use the existing Halide schedules found
in the implementations; Rake only changes instruction selection
and does not alter the overall structure of the generated code. The
set of benchmarks outlined above generates a total of 450 qualifying
vector expressions that Rake attempts to optimize. Rake currently
ignores all scalar expressions as well as all trivial vector expres-
sions, such as a single variable, non-strided vector-loads, or scalar
broadcasts. Rake assumes these are handled correctly by LLVM.

The benchmarks were compiled on a Windows 10 desktop ma-
chine with an AMD Ryzen Threadripper 2950X 3.5GHz 16-core
CPU and 128GB of RAM. All HVX runtime performance numbers
were computed using the reported cycle counts from Qualcomm’s
Hexagon Simulator v8.3.07.

7.1 Runtime Performance

To evaluate the effectiveness of Rake’s instruction selection algo-
rithm, we compare the runtime performance of all benchmarks
for the Rake HVX backend, using the existing Halide 12.0 HVX
backend as the baseline. The existing HVX backend is developed by
Qualcomm and Google engineers, representing years of developer
effort, and has been used for compiling production Android code
distributed to millions of devices [21, 29].

Figure 11 graphs the results of our experiment. On average, Rake
improved the overall runtime performance by 18%, with amaximum
observed speedup of 2.1× in the gaussian3x3 benchmark and the
lowest observed speedup of 0.93× in depthwise_conv. 10 of the 21
benchmarks demonstrated a performance improvement beyond the
3% margin of error introduced by the simulator, with another 10
benchmarks showing identical performance. Upon manual inspec-
tion of the generated code, we discovered that Rake did improve
instruction selection in some of these benchmarks. However, these
optimizations did not result in overall performance improvement
either because the benchmarks were memory-bound or because the
optimizations were not in the critical code path. Rake performed
worse than Halide’s optimizer on only a single benchmark.

To illustrate the breadth of optimizations discovered by Rake,
we now discuss a handful of representative examples, shown in
Figure 12. The figure shows the Halide IR expression, as well as the
optimized code generated by Halide and by Rake.

7.1.1 Missing Optimization Patterns. The first class of improve-
ments made by Rake over Halide’s existing Hexagon optimizer
relate to identifying missing optimization patterns. Through search,
Rake considers a much larger space of implementations and discov-
ers optimizations not handled by any of Halide’s existing rewrites.
We already highlighted three such instances from the Sobel filter
in §2.1. In Figure 12, we provide three more examples from other
benchmarks in our test suite.

• average_pool: The input code implements an addition be-
tween vectors of type uint16 and uint8. The Halide im-
plementation first zero-extends the uint8 vector and then
performs vector addition to complete the implementation.
Rake, by contrast, uses a single widening multiply-add in-
struction with a multiplicative weight of 1.
• camera_pipe: In this example, Rake removes the vmax in-
struction since the instruction vpackub already saturates
the value to an unsigned byte, making the max with zero
operation redundant.
• add: Rake is able to fold the shift operation into a widening
multiply-add, implemented using the single vmpy-acc intrin-
sic. Halide instead zero-extends the input before implement-
ing the shift-left and addition using a non-wideningmultiply-
add using vmpyi-acc. Since vmpy-acc generates a vector-
pair as output, two vmpyi-acc instructions are needed to
compute the equivalent tile.

7.1.2 Semantic Reasoning. In addition to discovering optimiza-
tion patterns missing in Halide’s rule-set, Rake can also discover
context-specific optimizations that require semantic reasoning about
the expression, such as inferring the range of values possible for
an intermediate output. Figure 12 shows two examples from the
benchmarks l2norm and gaussian3x3.

• l2norm: The input IR multiplies a vector of words with a
vector of halfwords. Halide generates the results in two steps:
first, it multiplies all odd halfwords with the vector of words
using the vmpyio instruction, and then it uses the shift-left
instruction vaslw to move the even halfwords into the odd
indices and repeats the first step. Rake, on the other hand,
avoids the shift-left operation and instead uses the vmpyie
instruction to directly multiply the even halfwords with the
vector of words. Interestingly, HVX only offers the vmpyie
instruction for unsigned halfwords. Therefore, to use this
instruction safely, Rake must prove that the sub-expression
producing the input to this pattern will never produce nega-
tive values (i.e, the most significant bit is always 0).
• gaussian3x3: Rake uses a fused instruction to implement
the rounding-shift-right as well as the lowering cast. This
transformation is only safe if the upper-most 8-bits of the
input values are always 0. In other words, performing a trun-
cating cast or a saturating cast produces the same outputs.
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Benchmark Code Pattern (Halide IR) Halide Codegen (HVX) Rake Codegen (HVX)

M
is
si
ng

Pa
tte

rn
s

average_pool wild_u16x + uint16x128(wild_u8x)
/* Latency: 3 */
wild_u16x + vzxt(wild_u8x)

/* Latency: 2 */
vmpy-acc(wild_u16x, wild_u8x, 1)

camera_pipe

uint8x128(
max(
min(wild_i16x, x128(127)),
x128(0)))

/* Latency: 4 */
vpackub( // saturate to uint8
vmax(
vmin(wild_i16x, vsplatb(127)),
vsplatb(0)))

/* Latency: 3 */
vpackub(
vmin(wild_i16x, vsplat(127)))

add
int16x128(wild_u8x) << 6
+
x128(int16(wild_u8) * -64)

/* Latency: 6 */
x = vzxt(wild_u8x)
vmpyi-acc( // Multiply-add
vsplat(int16(wild_u8) * -64),
(lo x), 64) // Lower 64 elements

vmpyi-acc( // Multiply-add
vsplat(int16(wild_u8) * -64),
(hi x), 64) // Upper 64 elements

/* Latency: 2 */
vmpy-acc( // Widening multiply-add
vsplat(int16(wild_u8) * -64),
wild_u8x,
64)

Se
m
an
tic

Re
as
on

in
g l2norm

x64(wild_i32)
*
int32x64(wild_i16x)

/* Latency: 6 */
vmpyio( // Mul i32s with odd i16s
vsplat(wild_i32),
wild_i16x)

vmpyio(
vsplat(wild_i32),
vaslw(wild_i16x, 16)) // Shift-left

/* Latency: 4 */
vmpyio( // Mul i32s with odd i16s
vsplat(wild_i32),
wild_i16x)

vmpyie( // Mul i32s with even i16s
vsplat(wild_i32),
wild_i16x)

gaussian3x3

uint8x128(
(wild_i16x + x128(8))
>>
x128(4))

/* Latency: 8 */
vshuffeb( // extract lower byte
vasr( // shift-right
wild_i16x + vsplat(8), 4),

vasr(
wild_i16x + vsplat(8), 4))

/* Latency: 2 */
// Fused shift right, round
// and saturate
vasr-rnd-sat(
wild_i16x,
4)

Figure 12: Rake uses search to find new optimization opportunities not considered by the existing Halide HVX backend. Here,

wild_{i|u}bb{x|} represents a subtree of signed (i) or unsigned (u) bb-bit value that is either a scalar (no suffix) or vector (x).

7.1.3 Data Movement. The third major category of perfomance
improvements comes from improved data movement.
• gaussian3x3, conv3x3a32: In some benchmarks, such as
the Sobel filter and conv3x3a32,Rake exploits fusedmultiply-
add sliding-window instructions such as vtmpy (3-wide re-
duction) or vrmpy (4-wide reduction). A major advantage of
of these instructions is that they reduce the number of vec-
tor loads necessary. For instance, row (a) in Figure 4 shows
that in addition to the smaller compute latency, the vtmpy
instruction requires one fewer vector load.
• add, mul, average_pool, max_pool, matmul:We found that
Rake frequently avoids unnecessary data shuffling opera-
tions introduced by Halide’s optimizer. The most common
example of this was Halide adding an interleave operation
to undo the implicit deinterleaving of a prior compute in-
struction (or vice versa). While Halide’s optimizer has an
optimization pass dedicated specifically to eliminating such
unnecessary interleaves and deinterleaves, it is not always
able to do so.

7.2 Compilation Performance

Table 1 shows a breakdown of compilation times for each bench-
mark. On average, Rake took 62 minutes to compile each bench-
mark, with a median compilation time of roughly 21 minutes. The
largest expression optimized by Rake required a sequence of 103
HVX intrinsics to implement.

The mean time spent lifting to the Uber-Instruction IR was 154
seconds, which equates to 9% of the compilation time. Synthesizing
swizzle-free sketches was more expensive, taking on average 397
seconds or 21% of the total compilation time. Synthesizing data
movement accounted for the majority of compilation time, tak-
ing on average 53 minutes and making up almost 70% of the total
synthesis time. There are three reasons why considerably more
time is spent on synthesizing data movement than on synthesizing
swizzle-free sketches. First, the search space for swizzles suffers
from symmetry, resulting in a larger set of candidate expressions. In
program synthesis, symmetries arise when multiple expansions of
a grammar result in the same program; the synthesizer unnecessar-
ily considers the same program multiple times. Second, Rake can
specialize the search space for compute instructions by leveraging
semantic information exposed by lifting. The same cannot be done
for swizzling, so Rake always considers the full set of shuffling in-
structions. Lastly, due to the backtracking nature of our instruction
selection algorithm, Rake often spends considerable time trying to
prove that the required swizzle cannot be implemented within a
given instruction budget.

Compared to pattern-matching optimizers, such as Halide’s ex-
isting HexagonOptimizer, Rake presents a different performance
to compilation time trade-off. As an offline optimizer, Rake can be
used to fine-tune applications for a given hardware platform. In
addition, Rake can be a valuable tool to inform compiler developers
of patterns and optimizations that are both missing in their ma-
chinery and important for performance. Furthermore, since Rake
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Table 1: Compilation statistics for the Hexagon HVX backend.

Benchmark Optimized
Exprs

Lifting
Queries

Sketching
Queries

Swizzling
Queries

Lifting
Time (s)

Sketching
Time (s)

Swizzling
Time (s)

Total Synthesis
Time (s)

sobel 4 348 252 3748 12 27 7274 7313
dilate 8 560 1376 1168 45 48 114 207
box_blur 4 76 820 597 4 538 1033 1575
median 40 1440 5256 5360 119 202 397 718
gaussian3x3 4 368 100 376 46 52 137 235
gaussian5x5 8 364 98 1636 22 20 214 256
gaussian7x7 20 864 320 6835 50 173 1358 1581
conv3x3a16 4 320 73 1254 96 2552 953 3601
conv3x3a32 4 404 41 1560 204 1628 750 2582
camera_pipe 44 2037 6177 9002 1153 429 13782 15364
matmul 10 594 456 6224 104 175 6835 7114
add 4 306 403 638 47 118 431 596
mul 4 492 427 576 129 184 1559 1872
mean 2 43 37 298 11 82 186 279
l2norm 4 262 163 301 49 13 77 139
softmax 18 755 679 1311 221 352 683 1256
average_pool 6 186 476 2246 6 42 248 296
max_pool 6 24 156 126 1 6 8 14
fully_connected 39 608 198 416 63 160 512 735
conv_nn 140 3673 4165 1612 558 1002 19335 20895
depthwise_conv 77 2926 3542 7941 301 538 10593 11432

uses SMT solvers for search and verifies its transformations, it can
even highlight bugs in the rule-based compiler. In fact, during our
manual inspection of the generated code, we found three bugs in
Halide’s HVX code-generation involving unsafe instruction selec-
tion. We have communicated these bugs to the Halide developers
and the appropriate fixes have been merged into the master branch.
We intend to keep working with Halide developers and share the
optimization patterns we discovered.

7.3 Limitations

While Rake’s algorithm is designed to generalize to other ISAs, such
as ARM and Intel’s AVX, our prototype currently only supports
Hexagon’s HVX backend. Our experiments also highlighted two
significant limitations in the way Rake is integrated into Halide.
Unlike Halide’s existing optimizer, which may modify the layout
in which data is stored in an intermediate buffer to enable better
instruction selection across multiple expressions, Rake optimizes
each expression individually. This was the key reason behind the
performance degradation observed in the depthwise_conv bench-
mark, but also reduced the speedup observed in other benchmarks
like average_pool. Secondly, in some cases, better instruction se-
lection was possible if Rake had access to certain loop-invariants.
For example, when the Halide schedule re-uses reads in a rotating
buffer, Rake is unaware of the relationship between data read in
this iteration and the data read in previous iterations, preventing it
from using more optimal sliding window instructions.

8 RELATEDWORK

Program Synthesis searches for programs that satisfy some user-
provided constraints [13]. A number of approaches have been de-
veloped to solve the synthesis problem [6, 12] using different algo-
rithms, such as constraint-based search [25], enumerative search [19],
or stochastic search [24]. Rake relies on Rosette [27] as the under-
lying synthesis framework. While these general-purpose synthesis
algorithms encode many clever pruning strategies and heuristics
to make decisions, they scale poorly to the instruction selection
problem [19].

Superoptimization is the task of using search to optimize low-
level programs based on instruction semantics. Traditionally su-
peroptimizers like Optgen [7], Lens [19] and the one proposed by
Bansal and Aiken [5] have focused on peephole optimization over
short instruction sequences, and target a broader class of optimiza-
tions than just instruction selection. Rake by contrast is designed
to be a target-specific instruction-selector that can operate on much
larger instruction sequences. Souper [23], a middle-end LLVM IR
superoptimizer, performs rewrites on its own IR via dataflow anal-
ysis. Unlike Rake, Souper does not support vector instructions or
hardware-specific intrinsics.

Autovectorization is the related task of converting scalar code
into vectorized implementations. Vegen [8] is an auto-vectorizer
that jointly performs instruction-selection for complex vector ISAs.
Unlike Rake, Vegen uses automatically generated pattern matching
rules for instruction selection. While automatically generated, the
pattern matching rules suffer from the same limitations as Halide’s
optimizer: they cannot perform semantic reasoning on expressions
andmaymiss creative applications of instructions. Diospyros [28] is
another auto-vectorizer designed to synthesize efficient implemen-
tations of kernels on DSP architectures. It uses equality saturation
to identify creative swizzles and vectorization patterns in its own
IR. When lowering the discovered shuffles to the backend target, it
delegates the instruction-selection process to the vendor-supplied
DSP compiler toolchain.

Verified Lifting [14] is a technique for extracting the semantics of
code by re-writing it in a higher-level abstraction through program
synthesis. Prior work has applied verified lifting as a means of
recovering intent from legacy code to port it to newer DSLs and
frameworks [2, 3, 9, 14]. We apply verified lifting to the instruction-
selection problem and use it to infer the higher-level compute
patterns in the input IR code.

Data Swizzling is the task of inferring permutations of data and
computation to optimize performance. Swizzle Inventor [18] is a
tool that infers swizzles to optimize applications for GPU memory
hierarchies. Unlike Rake, Swizzle Inventor can only synthesize
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data-movement and requires the users to provide a sketch describ-
ing where swizzles can be added; on the other hand, integrating
Swizzle Inventor into Rake could improve the quality of our swizzle
synthesis.

9 CONCLUSION

In this work, we described Rake, which takes code in the Halide
intermediate representation and uses program synthesis to perform
target-specific instruction selection for the Hexagon HVX digital
signal processor. Rake scales to real-world vectorized expressions
by decomposing the task into three different synthesis queries. On
a suite of 21 real-world benchmarks, Rake improves performance
an average of 18% and up to 2.1× over the existing combination
of Halide and LLVM, which use human-created pattern-matching
rules to perform instruction selection.
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