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Abstract

Parallelizing of software improves its effectiveness and pro-
ductivity. To guarantee correctness, the parallel and serial
versions of the same code must be formally verified to be
equivalent. We present a novel approach, called GRASSP,
that automatically synthesizes parallel single-pass array-
processing programs by treating the given serial versions
as specifications. Given arbitrary segmentation of the input
array, GRASSP synthesizes a code to determine a new seg-
mentation of the array that allows computing partial results
for each segment and merging them. In contrast to other
parallelizers, GRASSP gradually considers several paral-
lelization scenarios and certifies the results using constrained
Horn solving. For several classes of programs, we show that
such parallelization can be performed efficiently. The C++
translations of the GRASSP solutions sped performance by
up to 5X relative to serial code on an 8-thread machine and
Hadoop translations by up to 10X on a 10-node Amazon
EMR cluster.

CCS Concepts o Theory of computation — Parallel al-
gorithms; Verification by model checking; Automated
reasoning

Keywords Program Synthesis, Automatic Parallelization,
Inductive Invariants, Constrained Horn Clauses

1.

Data parallelism is one of the most crucial requirements for
modern software. Large amounts of data produced by indus-
trial applications make existing serial programs both slow
and inefficient. Due to nontrivial recurrent computations on
the back-end of those programs, developers often prefer to
completely rewrite serial code to enable efficient computa-
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tion on a distributed programming platform, such as MapRe-
duce [5], Dryad [14], Spark [34] or Hadoop [33].

In this paper, we consider a scenario, in which data is par-
titioned into a sequence of segments, each segment is pro-
cessed separately, and the partial outputs for the segments
are finally merged. Many tasks of such parallelism fall into
category of the conventional MapReduce methodology, in
which the order of the given data segments is not fixed. The
others are more challenging and require the dependencies
among segments to be taken into account. Developers at-
tempt to overcome the particular task-specific parallelization
requirements gradually, by considering the most simple and
intuitive solutions first. If after an extensive stage of test-
ing and verification the parallel program appears to be un-
satisfactory, a more complicated solution is required. In this
paper, we present an attempt to make this process more au-
tomated.

State-of-the-art synthesis tools use the Counter-Example-
Guided Inductive Synthesis (CEGIS) [28] paradigm: they
assume a space of candidate implementations and check
whether there exists a candidate among them that matches
a given specification. Typically, getting specifications in a
machine-readable form is hard since they are usually written
by and for humans. But for program parallelization, the sit-
uation improves. Serial program, assumed to be well-tested
and trustworthy, itself can be treated as the specification, and
the desired parallel program can be expected to comply with
the serial one for any possible inputs.

We formulate our synthesis task as a search for a new par-
allel program that preserves equivalence with the serial one,
i.e., the pairwise equivalence of inputs implies the pairwise
equivalence of outputs. We propose a novel approach, Grad-
ual Synthesis for Static Parallelization (GRASSP), that ef-
fectively performs the search. The key idea behind GRASSP
is to mirror the gradual software development process and
to consider potential solutions in stages, that is, exploiting
the type of data dependencies that persist in the serial code.
Its most distinguishing feature is the ability to break tangled
dependencies by supporting the cases where data cannot be
split into arbitrary segments.



Driven by automated formal methods, GRASSP man-
ages data approximations and performs automatic reasoning
about data dependencies. Consequently, its results are gen-
eral enough and can be adapted for use in many program-
ming platforms, from cloud-computing to ordinary laptops.
GRASSP handles arrays and higher-order operations over
arrays. For the sake of efficiency, the synthesis is performed
for a bounded number of both, array elements and segments.
To ensure soundness for larger inputs, GRASSP provides
SMT-based verification capabilities: the bounds could be in-
creased, the results be validated, and (if needed) the par-
allel code be re-synthesized. Finally, we propose a way of
inductive-invariant-based certification of the results using
constrained Horn solving.

We implemented GRASSP in an SMT-based program-
ming language, ROSETTE [30, 31], and evaluated it on a set
of looping programs in C++. We demonstrate that synthesis
with GRASSP is orders of magnitude faster than running the
programs themselves for a realistic amount of data. The C++
translations of the GRASSP solutions showed up to a 5X
speedup relative to serial code performance on an 8-thread
machine, and the Hadoop translations up to a 10X on a 10-
node Amazon EMR cluster.

Summary. This paper contributes a new approach, called
GRASSP, for automatically parallelizing single-pass array-
processing programs. GRASSP provides the following fea-
tures:

e [t carefully treats dependencies among data segments and
supports different parallelization scenarios determined by
the type of dependency in serial code.

e [t employs SMT-based synthesis for array-handling func-
tions that maintains array lengths lazily; it then certifies
the solutions for arrays of any length.

e [ts solutions are translatable to C++ multithreading code
and Hadoop tasks and achieve up to a linear performance
speedup relative to serial code.

The rest of the paper is structured as follows. We present
the intuition behind GRASSP using examples (in Sect. 2 and
Sect. 3). We then explain its architecture (Sect. 4) and the
theoretical conepts (Sect. 5-7). Sect. 8 provides low-level
details about the synthesis routine, and Sect. 9 describes our
evaluation. Finally, we present the related work in Sect. 10
and conclusions in Sect. 11.

2. Motivating Example

Consider a function that calculates the number of matches
of pattern 1(0)*2 in a string of elements from {0, 1, 2}. To
ease comprehension, we show the corresponding Finite State
Transducer (FST) in Fig. la and its C-encoding in Fig. 2.
Note that the input is split among several files, each of which
contains a separate segment to be processed in a specific
order. The program has N loops to read each file line-by-
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Figure 1: (a) Original FST and (b) Finite State Machine (A-FSM).

enum state { q-0, q-1 } ;

1

> struct st_pair { state q; int res; };

3 void fst_transition (st_pairx st, int v) {

4 if (v=128&& st—>q = q-0) { st—>q = q-1;
5 else if (v =2 && st—>q = q_1)

6 { st—>q = q_0; st—>res++; }

;

s // serial application:

9o st_pairx st = new st_pair ();
0o while (file_.1 >> v) fst_transition

v);
v);

(st,

2 while (file_N >> v) fst_transition
13 return st—>res;

(st,

Figure 2: C-function for the FST from Fig. 1a and serial processing of N
files.

enum delta { d.0, d_1 };

struct dt_pair { delta d;

bool search_bnd (int v) { return v = 2; }

void fsm_delta_transition (dt_pairx dt, int v)
if (search_bnd (v)) { dt—>found = true; }

6 else if (dt—>delta = d.0 && v =— 1)

7 { dt—>delta = d_1; }

bool found; };

L N

9o // parallel application, for each file_i
0 st_pairs st_i = new st_pair();

i dt_pairx dt_-i = new dt_pair();

2 while (file_i >> v) {

13 if (!dt—>found)

14 { fsm_delta_transition (dt_.i,
15 else { fst_transition (st_i, v); }

v)i }

Figure 3: Synthesized C-functions for the boundary search, the A-FSM
(Fig. 1b), and processing one of the NN files in parallel.

1 int total_res = 0;

> state q = q.0;

3 while (++i < N) {

4 total_res 4= st_i —>res;

5 qa= (9= 90 &

6 dt_i—>delta = d_0) ? q-0 q-1;
7 if (dt_i—>found) {

8 if (q = q-1) total_res++;
9 q = st_i—>state;

10 }

i}

12 return total_res;

Figure 4: C snippet for getting partial results from parallel processes,
updating, and then merging them.
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line and invoke function fsm_transition. This scenario
facilitates the handling of large amounts of data that often
make memory allocation infeasible.

The order of segments is crucial; for example, for the
following input, the computed output is expected to be 3:

segment; = {1,0,0,0}
segments = {0,2,1,2}

segment, = {0,0,0,0}
segment, = {1,0,2,0}

Notice that the number of matches of pattern 1(0)*2 is at
most the number of occurrences of element “2”’; therefore if
a segment does not have “2” (like segment, and segment,),
then the counter res does not change its value. Additionally,
if a segment does not have “1” (like segment,), then the FST
is looping, i.e., it does not change the value of state. This
observation is exploited while parallelizing each loop from
Fig. 2: functions search_bnd and fsm_delta_transition
(both shown in Fig. 3) search for elements “2” and “1” re-
spectively. The latter function encodes a Finite State Ma-
chine (or a A-FSM, shown in Fig. 1b) that behaves similarly
to the original FST from Fig. 1a but recognizes only the sub-
set {0,1} of its language and does not perform counting.
Thus, A-FSM takes as input only the prefixes of segments
until the first element “2” is found, and the original FST
takes as input only the remaining string.

For example, for segment,, the prefix identified by
search_bnd is segment, itself, and A-FSM takes it as in-
put and terminates in state d_1 (that is, at least one instance
of “1” appeared in segment,). For segment,, A-FSM also
takes the entire segment and terminates in d_0 (that is, no
instances of “1” in segment,). For segments, the prefix is
restricted only to its first element, and A-FSM terminates in
d-0. The remaining elements of segment, are processed by
the original FST, which sets the value of the counter to 1. Fi-
nally, for segment ,, the prefix contains all but one element,
A-FSM terminates in d_1, and then the original FST sets the
value of the counter to 0.

Note that during the parallel run, there are multiple A-
FSMs, one for each processor. They operate in isolation and
do not share knowledge about their states. However, once
they all terminate, their outputs get merged, as shown in
Fig. 4. That is, the final counter total_res gets the sum
of the partial counters for segments and segment,, and
then gets updated with respect to elements from all prefixes:
d-1 and 4.0, respectively, for segment, and segment, fol-
lowed by “2” in segment 4 reveal an instance of 1(0)*2 that
spans three segments; d_1 for segment, followed by “2” in
segment 4, reveals the last instance of 1(0)*2. In general, par-
allel execution for four processors is shown in Fig. 6. Perfor-
mance speedup can be linear: the parallel execution is up to
four times faster than the serial execution, shown in Fig. 5.

3. GRASSP Overview

This section outlines how an arbitrary recurrent function f
can be effectively parallelized using the functions synthe-
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| segment segment, || segments || segment,

statey
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Figure 5: Executing a serial function.
| segment, | | segment, | | segment g || segment, |
l, , \
fold(f... fold(f..)  fold(f... fold(f...
””””” \*
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Figure 6: Best-case scenario — merging partial results without prefixes.

sized by GRASSP. To simplify presentation, in this section,
we assume that data is stored in an n-sized array. This lets us
apply the higher-order function fold, a well-known mecha-
nism taken from functional programming languages.

We focus our attention on functions that change the state
iteratively for each element of a given array A. We denote the
results of such iterations as fold(f, stateg, A), where stateg
collects initial values of state variables of f. Throughout the
paper, we write fold(f...) when the remaining arguments
are clear from the context. We use primed notation for the
“small-step” updates of stateg, i.e., after applying f exactly
once. To avoid confusion, the “big-step” updates of stateg,
i.e., after applying fold(f ...), are denoted by the use of in-
dexed notation. For example, the result of fold(f, stateg, A)
is mnemonically denoted state.

Serial computation (specification). In the rest of the pa-
per, we consider a scenario in which the data array A is split
into segments. A serial run of fold(f ...) for four segments
{segment,} is depicted in Fig. 5. Function fold(f ...) takes
each segment, as input and requests the result of fold(f...)
for segment,_;. That is, the computation starts with stateg,
and it gets updated to state; for segment;. Then, states is
computed by applying fold(f...) to segment,; states by
applying fold(f ...) to segments; and states — by applying



fold(f ...) to segment,. The final output (denoted resy) is
extracted from state, and returned to the user.

The drawback of serial computation is its long processing
time. Indeed, the application of fold(f ...) to each segment,
waits until segment;_; is processed, which in turn waits un-
til segment,_, is processed, and so on. Thus, assuming the
running time to process each data segment is estimated as
O(™/4), the running time for the entire process of obtain-
ing res, using the serial computation is estimated as O(n).
Ideally, we wish to optimize the computation to behave as
shown in Fig. 6: to break the data dependencies due to f.
The next paragraphs describe several possible scenarios for
such parallelization and the novel ways of attaining them us-
ing GRASSP.

Split-based computation. The motivation to reduce the
waiting time while performing serial computation over the
data segments is straightforward. GRASSP seeks to im-
prove computational efficiency, and formally ensures that
no precision is lost for the final output. Examples of parallel
split-based functions synthesized by GRASSP are shown in
Figs. 6, 7, and 8.

The key difference of the split-based against the serial
computation is that the final output is composed from several
partial outputs with the help of a function called merge. The
main insight for getting partial outputs is breaking variable
dependencies inside a state. Specifically, if there were a way
to get a partial output for each segment; using a common
input stateg, then the i-th processor would not wait until
results from preceding processors were computed.

In the best-case scenario (Fig. 6), the running time for the
parallel process of obtaining each partial output is estimated
as O("™/,4), and the running time for merging the partial out-
puts is O(3). This scenario occurs if the choice of segment
boundaries does not affect the result of merge. For example,
while calculating the number of elements in an array, it is
sufficient to calculate the number of elements in each given
segment of the array and then to calculate the sum of these
partial outputs.

In a worse-case scenario (Fig. 7), partial results computed
for the given segments are incomplete, which means they
could not get merged as described above. It occurs, e.g.,
when checking if array elements are equal to each other.
In this case, it is not sufficient to check that this prop-
erty holds for each given segment; indeed, all elements of
some segment; could be equal to 0, while all elements of
remaining segments could be equal to 1. Therefore, extra
processing of the partial results is needed. In fact, to com-
plete each partial output, it is sufficient to pick one ele-
ment of segment,,; and check whenever it also equals all
elements of segment,. In the diagram, this extra process-
ing is performed by a function called split that for some
pre-determined constant % identifies the first & elements of
each segment;, which is further referred to as a k-sized
prefiz;. Once fold(f, statey, segment;) is computed, the
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| segment | | segmenty | | segments || segment |
~~~~~~~~ e e el
| segment | |preﬁzzl
l | ; segment, | | Isegment3 | | ' segment |
fold(f...) fold(f...) fold(f...) fold(f...)
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Figure 7: Worse-case scenario — merging results with constant prefixes.

| segment, || segment, || segments || segment, |
fffffffffffffffffffffffff R A S
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Figure 8: Worst-case scenario — merging results with conditional prefixes.
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A

Figure 9: Worst-case scenario mitigated with summaries — updating partial
results before merging.



resulting state; is taken as input by the (i+1)-st proces-
sor that iterates over prefiz;,; and eventually completes
fold(f, state;, prefiz;, ). Finally, the completed outputs are
taken as input by the merge function that calculates the final
output. The running time for the parallel process of obtain-
ing each partial output is estimated as O(™/4 + k), and the
running time for merging the partial outputs is O(3).

In the worst-case scenario (Fig. 8), constant k£ needed for
a set of prefixes does not exist, and partial outputs com-
puted for the given segments are incomplete. This occurs,
e.g., when counting the number of matches of a regular ex-
pression of unknown length (e.g., 1(0)*2). As described in
Sect. 2, the prefix can be expressed via a condition over the
array elements: the first element equal to “2” in segment,
witnesses the boundary between prefiz; and suffiz;. A naive
way of completing the computation of each partial output
is to keep running fold(f ...) for the prefix of a subsequent
segment. However, the running time for this approach would
depend on the existence of boundaries for each segment; but
even in the most unlucky situation, the running time still
would not exceed the time for the serial computation O(n).

Split+Sum+Update-based computation. The split-based
computation of f is optimal only if the conditional prefix
is empty for all segments. Evidently, this is not the case
for our example in Fig. 8, in which prefiz, is equivalent
to segment, itself; consequently, the entire computation
over segment, depends on results of the computation over
suffix,. GRASSP counters such inefficiency by: (a) captur-
ing the most relevant information about all elements seen
during the explicit search for the segment boundary (with a
function called sum), and (b) using this summary to instan-
taneously update the preceding state (with a function called
update).

A diagram of split+sum+update-based computation cor-
responding to the example in Sect. 2 is shown in Fig. 9.
There are two main differences from split-based computa-
tion: (a) fold(f...) is applied only to each suffiz; and to
the initial state, and (b) each state; (except the last one) is
updated with respect to summary A; 1, providing the same
result as could be found after processing prefiz, ;. By con-
struction, each A-update is a single-step procedure (as op-
posed to an iterative procedure of traversing the consequent
prefiz). In the context of 1(0)*2-counting, each A, re-
flects the appearance of “1” in the given prefix; and each
call update(state;, A;y1) matches A; 11 with the fact that
there is (or there is no) “2” after the last appearance of “1”
in suffiz;. The entire running time for split+sum+update-
based computation including the merging of partial outputs,
is estimated as O("/4 + 3).

4. Gradual Synthesis

GRASSP seeks to gradually find the simplest way (among
the ones listed in Sect. 3) to parallelize computation for a
given function f and all possible segmentations of input
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Figure 10: GRASSP architecture.

data. The search is gradual in the purest sense: GRASSP
checks whether the best-case (Fig. 6) or worse-case (Figs. 7,9)
scenarios hold, and jumps between stages only on demand.
The increasing complexity of synthesis in different stages of
GRASSP is the key to saving time when parallelizing and to
delivering as simple a solution as possible.

The GRASSP architecture is depicted in Fig. 10. In-
ternally, GRASSP models input data as arrays and treats
them nondeterministically, i.e., it allows them to contain
only symbolic elements. Thus, when parallelizing a given
function, the algorithm considers all possible resolutions of
nondeterminism for the symbolic elements of the array, and,
if a solution is found, it is guaranteed to be general enough to
satisfy all arrays containing numeric elements. To ensure the
finiteness of the search space of the solutions, the input ar-
rays are bounded by a user-defined number of elements. The
bounds can, in fact, be maintained lazily: a round of synthe-
sis for a chosen bound can be followed by a round of veri-
fication for a bigger bound and then (if needed) by yet an-
other round of synthesis. Finally, to ensure correctness of the
synthesized solutions in an unbounded case, GRASSP relies
on a solver of satisfiability of systems of constrained Horn
clauses (CHC). That is, each system of CHCs encodes the
equivalence condition between the serial and parallel code
for arrays of any size (see Sect. 8.2). Satisfiability of such
system (i.e., existence of the inductive invariant) entails the
soundness of the parallelization.

GRASSP is parameterized by libraries of templates (i.e.,
partial programs with holes) for the functions split, merge,
sum, and upd, required in different stages of the approach.
The libraries contain predefined templates that help synthe-
sizing single-pass array-processing functions (see Sect. 9)
and can also be populated with new, user-defined templates
to enlarge the search space.

Three main stages allow GRASSP to gradually synthe-
size parallel implementation of a given serial function. For



all stages, the serial code is treated as specification, and
the synthesized parallel code is asked to fulfil this specifi-
cation, so that both serial and parallel code produce equiv-
alent results. Each synthesis stage is performed on a sub-
set of templates and at a low level relies on an off-the-shelf
SMT solver. Whenever a synthesis stage succeeds, the par-
allel code is delivered to the user; otherwise, GRASSP pro-
ceeds to the next synthesis stage. Thus, GRASSP’s modular
architecture allows the addition of more synthesis stages that
in the future could support other types of parallelization.

The first stage is built on the hypothesis that a given
function can be parallelized without segment prefixes. Thus,
it requires templates for the merge function only and checks
for instantiations of holes for one of those templates to
witness the hypothesis. The entire synthesis problem for this
stage is described in detail in Sect. 6.1.

The second stage is built on the hypothesis that a given
function can be parallelized with constant prefixes. It also
requires templates for the merge function, as well as a finite
set of constants (to constitute the lengths of prefixes which
are the same for each data segment). The entire synthesis
problem for this stage is described in detail in Sect. 6.2.

The third stage is the most challenging. It consists of
two sub-stages. The first is built on the hypothesis that a
given function can be parallelized with conditional prefixes
and requires the use of templates for the merge and split
functions. Synthesized implementations of these functions
raise the issue of how to optimize the use of prefixes via
summaries and updates. Thus, the required templates for this
stage are the sum and upd functions. We elaborate on the
synthesis problems for this stage in Sect. 6.3 and further in
Sect. 7.

5. Notation and Specification for Synthesis

Before describing the synthesis problems outlined in Sect. 4,
we formally introduce the functional notation for single-
pass array-processing programs, namely, those that take a
single finite-sized array as input and recurrently compute a
single output. In the following three sections, we use terms
“function” and “program” interchangeably.

Let D, In, and Out be any types, element d : D is
called state; elements in : In and out : Out are called
input and output respectively. This paper considers function
f, which updates a state for a given input, and function h,
which converts a state to an output:

f:DxIn—D h:D — Out

An n-sized array is a finite sequence of inputs, A : In".
Function f can be iteratively applied to the elements of A by
means of the higher-order function fold:

fold : (D x In — D) x D x In™ — D

For example, let A = (inq,...,in,) be an array of n
elements; in the first iteration, f would be applied to element
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in1 and initial state dy. The updated state would then be
updated by f again with respect to element ins. The result
of n iterative applications of f to dj is called a final state,
represented as the following first-order recurrent relation:

fOZd(fv d()»A) = f(znna f(innfla ey f(inZa f(inla dO))))

Conventionally, out must be computed only for the final
State:

out & h(fold(f,do, A))

Throughout the paper, we rely on an operator that con-
catenates 1 arrays:

append : In™ x ... x In™™ — Jpm T tnm

It is important to ensure the following functional property
of append:

fOZd(fad(b append(Ah e Am))
fold(f, fold(f, .. fold(f,do, Ar), ...

ey
7Am—1); Am)

The left side of (1) denotes initial state dj iteratively up-
dated by f with respect to all elements of append (A, ... Ap).
The right side of (1) consists of m groups of consequent
applications fold(f...) to each of the arrays {A;}. That
is, the final state obtained for an i-th fold(f...) is fur-
ther used for the (i + 1)-th fold(f...). We refer to this
property as sequential recurrence decomposition since it
guarantees equivalence between a single application of
fold to append(Ay,...A,,) and m recurrent applications
fold(f...).

The equivalence of final states entails equivalence of out-
puts computed from these states.

6. Synthesizing Functions merge and split

Parallel application of fold(f...) to each of the arrays in
{A;} requires decomposition of the recurrent relation. We
assume that each application of fold(f...) to A; takes the
same initial state dy and refer to the corresponding final
states {d; } as the parrial states.

Vi-d; = fold(f,do, Ay)

The question is how to merge partial states, so that the
result is equivalent to the output of sequential computation:

merge : D™ — Qut

In the rest of the section, we establish the property of par-
allel (as opposed to sequential) recurrence decomposition
that binds together all ingredients of the parallel processing
of m arrays. Interestingly, there are several possible ways to
define this property, depending on the existence of merge
for each particular f and h. We consider three such cases.



6.1 Best-Case Scenario (No Need for Prefixes)

The first case assumes the existence of a function merge
that is directly applicable to all partial states obtained after
applications of fold(f ...) to each A;.

Synthesis problem. Given functions f and h, and initial
state dp, we wish to find a function merge, such that for any
possible sequence of input arrays, the output of merge is
equivalent to the output of sequential computation:

dmerge,V Ay, ... Ap-
h(fold(f,do, append(Ay,...

2
Ap))) = merge(dy ..., dp)

6.2 Worse-Case Scenario (Need for Constant Prefixes)

We say that two arrays A’ and A" are respectively prefix and
suffix of Aif A = append(A’, A”). We allow the prefix to
be an empty array. We denote by prefiz,(A) the prefix of
A of the predetermined length ¢. We call this the constant
prefix.

When no merge function meeting (2) exists, then compu-
tations fold(f,d, A;) and fold(f,d, A;+1) depend on each
other and cannot be correctly performed from the same ini-
tial state. However, incorrect executions could be repaired
by recomputing the affected prefix. The scheme of this sub-
section performs such a repair on a constant-size prefix, if
one exists. First, computations fold(f,d, A;) are performed
in parallel from the initial state d = d, yielding a partial
state d;. Subsequently, the scheme reruns the computations
on a constant-size prefix of A;,;, starting from d;. State
df —repaired ghtained after processing the prefix, is then sup-
plied to a suitable function merge instead of d;:

Vi - df e S pold(f, dy, prefiz,(Ai))
Note that computing each d~"*"** requires processing
prefir,(A;4+1) twice, with the second processing serialized
after d; has been computed. The inefficiency is mitigated by
the observation that the prefixes can be processed in parallel,
so the critical path of the computation grows only by the
processing of the constant prefix.

Synthesis problem. Given functions f and h, and initial
state dp, we wish to find a function merge and a constant
£, such that for any possible sequence of input arrays, the
output of merge applied to the /-repaired partial states is
equivalent to the output of sequential computation:

34, merge,V Ay, ... A 3)
h(fold(f,dy, append(Ay,...An))) =
merge(dlé—repaired, N ’dT[iL—_rlepaired7 d'm)

Note that the partial state d,,, produced for the last array
A,, is always repaired since there is no subsequent array
Am+1.
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6.3 Worst-Case Scenario (Need for Conditional
Prefixes)

When there is no function merge and constant ¢ that sat-
isfy (2) or (3), we wish to find another way to shift array
boundaries. Similar to the scheme presented in Sect. 6.2, the
solution would rerun the computations on the affected pre-
fixes. However, the length of a prefix of some A might vary
from case to case. The problem of identifying such condi-
tional prefixes can be reduced to: (a) searching for a predi-
cate prefix ., over the array elements, and then (b) itera-

tively evaluating prefix ., for each element of the array:

Prefix conq - In — Bool

Formally, the procedure to get the conditional prefix is
iterative and can be formulated as the application of the
higher-order function fold. Let (found, pos) : Bool x Int
be a tuple containing a boolean flag found and a position
number pos. The entire length of a conditional prefix of A is
calculated by applying function bnd.onq to (false,0) and to
all elements of A:

bndeona({found, pos), el) =
ite((prefic .onq(el) A —~found), (true, pos),
ite(—found, (false, pos + 1), (found, pos)))

Vi - length = fold(bndeong, (false, 0), A;)

prefiz;

In other words, for each 4, the value of length,,,. g,  is the
position number & of some element in A such that prefiz ., 4
evaluates to true for the k-th element, and prefix ., ; evalu-
ates to false for each j-th element in A so that j < k.

Predicate prefiz ., gives rise to a function cond spy;; that
splits each array into two parts:

cond spiit © (In — Bool) x In"™ — In* x In*

where the sum of sizes of two arrays in the image equals
n. Thus, for A;...A,, we have m pairs of prefixes and
suffixes:

Vi - prefiz; = first(cond spiie (prefix onq, Ai))
Vi - suffiz;
Vi - A;

s second (cond spiit (Prefic .onq, Ai))

append(prefiz;, suffiz;)

Note that for some A, prefiz.,,q could evaluate to false
for each element of A;. In other words, prefix, = A;, and
suffiz; is empty. This case is crucial for split-based paral-
lelization since the repair of fold(f, d;—1, prefiz;) would re-
quire a subsequent repair with respect to prefiz; ;, and the
partial state d; would not simply be computed and used at
all (recall prefiz, in Fig. 8). In the rest of this subsection, we
formally describe this case.

Let us fix a sequence Indprefiz, , = {P1,---,Ps} C
{1,...,m} that contains indexes of arrays A1, ..., A,, for



which the suffixes are not empty. It is easy to see that the
computation over each suffiz,, should be sequentially re-
paired by p; 11 — p; prefixes:

Vs - dyerere E fold(f, do,

append(suffiz,,,, prefiv,, 1, .. s prefiz,,, )

Finally, the computation over the first array should also
be repaired as follows:

def

repaired
dO

fold(f, do,
append(prefizy, . ..

7p’reﬁxp1—1a preﬁ'rpl))

Intuitively, this definition practically finds a new segmenta-
tion of the input arrays { A; } based on prefiz ., that allows
merging the local states. Each d;fp““"ed is the result of com-
puting f on such a segment.

We are now ready to formulate the synthesis problem for
the “worst-case” parallelization scenario. The main differ-
ence with the previous “worse-case” scenario is that it con-
siders sequences (of various length) of repairs, and the total
number of repaired states could be less than the number of
the input arrays (due to multiple possible empty prefixes).

Synthesis problem. Given functions f and h, and initial
state dop, we wish to find functions merge and prefix .., 4,
such that for any possible sequence of input arrays, the out-
put of merge applied to repaired partial states is equivalent
to the output of sequential computation:

I prefix .ong, merge,V Aq, .. A
h(fbld(f7 do, a'ppend(Aly cee Am))) =

repaired jrepaired
dU ’ dpl

“)

drepaired

merge( P s )

7. Synthesizing Functions sum and upd

The parallelization scenarios so far considered the original
function f for both, main computation and the prefix-based
repair. Clearly, an iterative repair of each prefiz, may lead to
a further inefficiency since the elements of A; are processed
twice: for calculating the prefix and for completing the pre-
ceding state, as pointed out in (4). To avoid such double pro-
cessing over array elements, function bnd.,,q could be aug-
mented by summarization capabilities that would memorize
the appearances of the elements from the prefix being con-
structed. Once computed, such summaries would replace the
applications fold(f...) by a code that produces the same
effect in one step. Another important requirement for such
summaries is that they should be applicable also for the case
where for some i, length,,,.5, equals the length of A;.
Thus, we are looking for an alternative “small-step” re-
pair of computations over the non-empty suffixes specified
in Indpyrefiz

cond

Vpi - dy, = fold(f,do, suffiz,,)
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Let D’ be a type, which is expressive enough to capture
the effect of updates to all possible suffixes with respect
to all possible prefixes. That is, instead of performing a
sequence of small-step updates to each d,, with respect to
prefit, 1, .., prefiv,, , using fold(f ...), we wish to find
functions sum and upd and perform just big-step updates for
Ap.41,---,Ap,, € D' created by the iterative application
of sum for all elements of the corresponding prefixes (recall,
e.g., repairing suffiz, by A, and Ags in Fig. 9):

sum : D' x In — D' upd : D x D' — D

The idea is to compute each A; € D’ by iterative applica-
tions of sum to all first elements of A; until the first element
for which prefiz,,, evaluates to true is found. Note that
this procedure can be naturally embedded into the procedure
for computing the corresponding prefiz ;:

A cona((found, A), el) =
ite((prefic .onq(el) A —found), (true, A),
ite(—found, (false, sum(A, el)), (found, A))))

Vj . Aj g fOld(Aconda <f&l8€, Ainit>a A])

Finally, the result of sequential updates of d,,, with respect
t0 Ap,41...Ap,,, could be computed as follows:

Vpi - dﬁb = upd(Ale, (U'pd s (uPd(Aerv dp»))))

Synthesis problem. Given functions f and h, and initial
state dy, for which functions prefiz,,,, and merge exist and
(4) is satisfied, we wish to find functions sum and upd, such
that for any possible sequence of input arrays, the output
of merge applied to “updated+summarized” partial states is
equivalent to the output of sequential computation:

dsum, upd,V Ay, ... Am- 5)
h(fold(f,do, append(Ai, ... Ap))) =
merge(dé‘, dﬁl, e ,di)

Alternatively, functions sum and upd can be synthesized
by exploiting the already satisfied condition (4):

Jsum, upd -V Ay, ... Am, Vp; - dﬁi = d;fp“md

8. Core Machinery behind GRASSP

GRASSP uses the well-established approach to program
synthesis that searches for a solution within a space of pre-
determined candidates. Since a direct reasoning on the level
of formulas (2), (3), (4), and (5) is hard, GRASSP fixes the
number of arrays and the length of each array and searches
for an “approximate” solution in such a bounded setting.
Our synthesis procedure is reduced to a sequence of
equivalence checks between each candidate and the serial



inv(sad,r,ry ...

inv(s_id v’ ..

sdid=m = ri=riA...Ar

Tm) <—Sd = 1,7 = init,ry = init, ..., vy = init
) inv(s_id, 1 .. ), (soid = sid V siid' = siid + 1),r" = f(nondet, ),

sid=1 = r] = f'(nondet,r ) Ay =ro A . ATH = T,

/

1 =Tm_1 AT = f'(nondet,r,,),

L +inv(sad,r,r1...1m), s4d < m, h(r) # merge(ry ... 7Ty)

Figure 11: Encoding PA to CHCs.

ent(sad,r,ry ...

ent(siad v’ vl ...

Tm) sid=1,7r=0,11=0, ..., 7, =0
r) cnt(sid, .o, (sid = sid Vossid = sad + 1), =1+ 1,

sid=1 = ri=ri+1ATh=ro A... AT, =Tp,

sid=m = 11 =T1 AN AT | =Tm 1 AT, =7Tm +1,

L «cnt(sad,ryry..orp), sad <myr #£r1+ ...+ 1

Figure 12: Example of encoding to CHCs (“counting elements”).

program (i.e., the specification). Both program are symbol-
ically executed, which yields two quantifier-free first order
formulas. Then these two formulas are conjoined with the
pairwise equivalence of the input variables and the negation
of the equivalence of the output variables. Unsatisfiability
of the resulting formula means the candidate is sufficient for
the chosen bound, and satisfiability means the search should
continue for the next candidate.

In the lower level, GRASSP implements an instance of
the Counter-Example-Guided Inductive Synthesis (CEGIS)
[28] paradigm, in which the satisfiability checks are dele-
gated to an SMT solver. The key insight is to use satisfy-
ing assignments produced for each formula (i.e., counter-
examples showing that a candidate does not meet the spec-
ification) and pruning the remaining search space based on
them. Since the technique is standard, we refer the reader
to [30, 31] for more details.

8.1 Applying (Un)-Bounded Verification for Synthesis

Approximate solutions for the synthesis problems are easy
to find if the pre-defined bounds are sufficiently small. For
bigger bounds, each solution should be re-verified and, if
the verification failed, re-synthesized from scratch. Ideally,
a solution needs to be verified without respect to any bound
to guarantee the complete equivalence between the serial and
the parallel programs.

In an unbounded setting, a verification condition is en-
coded into a system of constraints that involves uninterpreted
predicates. Consequently, verification results rely on a deci-
sion procedure that can find an interpretation for the predi-
cates, which represents a solution for the corresponding sys-
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tem. In first-order logic, this can be done by checking satis-
fiability of constrained Horn clauses (CHCs).

Let us fix a vocabulary of interpreted symbols that con-
sists of sets F and P, fixed-arity function and predicate sym-
bols, respectively. Suppose we are given a set R of uninter-
preted fixed-arity relation symbols, disjoint from F and P,
and a set X of variables. A constrained Horn clause is a for-
mula:

H(—Il,lg/\,...,/\ln,s (6)

where each [; is an application of a relation symbol r € R to
first-order terms over F,X’; S is a constraint over F, P, X;
and M is either an application of € R to first-order terms
over F.

Following the constraint logic programming convention,
the right side of (6) is a conjunction of terms and is called
body of the clause. The left side of (6), or H, is called head
of the clause. A clause is called query if its head is R-free;
and otherwise, it is called rule. A rule with body true is
called fact. A clause is linear if its body contains at most one
predicate symbol; otherwise, it is called non-linear. A set of
CHC:s over predicates R is called satisfiable (or solvable) if
there is an interpretation of the predicates R, called inductive
invariant, such that the universal closure of every clause
holds.

8.2 Certifying GRASSP Solutions

CHC:s are served to encode the equivalence conditions be-
tween the serial and the parallel programs. If satisfiable, the
corresponding inductive invariant certifies the parallel pro-
gram delivered by GRASSP. We present a system of linear
CHC:s that encodes a product automaton (PA) that simultane-
ously executes both programs for the same (potentially un-



bounded) array of input data and requires equivalence of the
outputs after each step. CHC-encoding proceeds in a way
similar to [21], and in particular, results in one fact, one rule,
and one query. The fact encodes an assignment to the initial
state of PA, the rule encodes a transition relation of PA, and
the query encodes the violation of the equivalence condition.

Intuitively, PA maintains one state variable r, which con-
tains the serial function result for the data array traversed so
far, and m other state variables, which contain partial results
{r;} for all segments of the data array. Each time PA reads
an element from the array (treated nondeterministically), it
updates r and strictly one of {r;}. Our goal is to inductively
prove that the application of merge to all partial results {r;}
is equivalent to 7.

The key insight for encoding equivalence conditions is
the use of an uninterpreted predicate inv, a template for an
invariant that exists if and only if the equivalence holds. Note
that the rule has inv twice: it describes the pre-states and
corresponding post-states of a transition. Additionally, inv
appears: (a) in the fact, to ensure that it covers initial states,
and (b) in the query, to ensure that after any transition made
by PA, inv is strong enough to guarantee that the error (i.e.,
a violation of the equivalence) is unreachable.

To encode the segmentation of an arbitrary array, we in-
troduce a helper integer variable s_td which contains the cur-
rent segment’s index. That is, for a fixed number of possible
segments m, s_td can either increment its value or maintain.
Further, s_id identifies which partial result r; gets updated.
Finally, in the query, s_id is forced to be less or equal to m,
thus ensuring that the search exhausted all possible segmen-
tations of the input array up to length m.

A skeleton for the system of CHCs that encodes the veri-
fication condition is shown in Fig. 11. It has f and h, which
represent the specification, and f’ and merge (that embeds
sum and upd, if needed), which represent the solution by
GRASSP.

Example. Fig. 12 shows an instantiation of the system of
CHCs at Fig. 11 for the best-case parallelization scenario
(i.e., sum and upd are not needed) of the program that
calculates the count of the array elements. Trivially, f
I merge = “+”; h is the identity function, init = 0;
and nondet symbol is ignored (i.e., no matter what are the
array elements, the program just counts them). The system
of CHC:s is clearly satisfiable since there is an inductive
invariant ent(s_id,r,ry ... 7m) Er=r+...4r, that
makes each implication in the system of CHCs true.

An invariant can be obtained by guessing various formu-
las, substituting them to the system, and checking validity of
each implication. Alternatively, the solvers based on Prop-
erty Directed Reachability (PDR) [13, 17] perform fixed-
point computation by alternating interpolation and quantifier
elimination and incrementally build the invariant. In our ex-
periments, PDR detected invariants for nearly all programs

in our benchmark set (i.e., the ones expressible in linear
arithmetic), thus proving the equivalence between the given
and synthesized programs in the unbounded setting. Most
of the invariants (especially for Split+Sum+Update-based
computations) are not human-readable, so we do not present
them in the paper.

9. Evaluation

We implemented GRASSP in an SMT-based programming
language, ROSETTE [30, 31], and supplied the template
libraries for the merge, sum, upd and split functions.
GRASSP treats a serial implementation of an array-handling
function as specification. It traverses the search space of can-
didate implementations populated by explicit instantiations
of the templates and model-checks whether a current parallel
candidate produces equivalent results to the serial one.

9.1 Benchmarks

We evaluated GRASSP on a set of ROSETTE implementa-
tions for some array-handling problems inspired by [3, 4,
25, 27]. Table 1 lists programs, which model wide classes of
real-world analytics problems. For example, “maximal dis-
tance between ones” can be interpreted as “longest period
between commits in github”; “checking if the array is sorted”
can be interpreted as either “checking if the order of sys-
tem log files is consistent with system time” or “checking if
there is arithmetic overflow of some counter”; “counting in-
stances of (1)*2” can be interpreted as “counting the number
of purchases of the item strictly after searching for it several
times”, and so on.

In Table 1, the benchmarks are distributed across four
groups that correspond to the three stages of GRASSP in
Fig. 10 and properties of function merge:

B1. First stage of GRASSP (with empty prefixes) with a triv-

B2.

B3.

B4.
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ial implementation of function merge (to be explained in
the rest of this subsection)

First stage of GRASSP (with empty prefixes) with a
nontrivial implementation of function merge

Second stage of GRASSP with implementations of cons-
tant-sized prefix computation and function merge

Third stage of GRASSP with implementations of condi-
tional-prefix computation and functions merge, sum and
upd

We say that function merge has a trivial implementation
for parallel code with m segments if: (1) it takes m partial
states, and (2) it produces the final output in m — 1 steps
(see Sect. 9.2 for examples). We separate groups B1 and B2
to show that the search within a GRASSP stage can also be
made gradually. That is, GRASSP attempts to synthesize a
trivial merge first, and, if the attempt did not succeed, it then
proceeds to synthesize any other merge.

Benchmarks from groups B3 and B4 require shifting the
segments boundaries via constant and conditional prefixes,



Table 1: Applying GRASSP to parallelize looping programs of different types; and runtime evaluation of the synthesized results.

Benchmark description

GRASSP performance

Parallel code performance

(synt time) data size (Gb) time (serial) % Speedup

counting elements 1.056s 126 18m 23.083s 3.6X
° counting elements greater than a constant 1.393s 95 26m 37.630s 4.8X
>< & search for an element 1.349s 95 26m 42.664s 4.8X
< E sum of elements 2.030s 95 25m 58.071s 4.9X
& = sum of even elements 1.770s 95 26m 27.372s 47X
g =z sum elements greater than a constant 2.109s 95 25m 58.071s 4.9X
e minimal element 1.473s 100 29m 56.584s 4.7X
maximal element 1.628s 100 29m 47.601s 4.7X
maximal absolute value 1.744s 100 29m 27.438s 4.7X
% second maximal element 6.230s 100 30m 23.832s 4.7X
>< E delta between maximal and minimal elements 4.626s 100 30m 0.074s 5.0X
S = average integer value 2.319s 95 27m 5.305s 4.8X
g = counting maximal elements 3.090s 100 29m 52.567s 4.9X
g % counting minimal elements 3.228s 100 30m 27.702s 4.8X
g equal number of zeroes and ones 1.490s 95 26m 0.901s 4.8X
+ counting distinct elements 1.774s 66 23m 19.956s 14.5X
2 X checking if all elements are equal to each other 1.455s 88 17m 38.415s 4.9X
g 71:3 checking if the array is sorted 1.395s 87 16m 57.736s 5.1X
° o= checking if the array is alternation of 0 and 1 1.542s 91 14m 36.051s 3.6X
>< counting instances of (1)* 2.276s 110 17m 38.024s 3.8X
s ., counting instances of (1)*2 1.860s 110 17m 53.466s 43X
a & counting instances of 1(0)*2 2.157s 110 20m 14.363s 4.5X
E g counting instances of (1)*(2)*3 11.695s 93 15m 42.181s 3.9X
S £ counting instances of 1(0)*2(0)*3 5.940s 93 15m 3.485s 3.8X
;é : checking if 0 (1) is only in the first (last) position 5.531s 110 17m 50.585s 4.0X
IS maximal distance between ones 1.830s 110 17m 36.824s 3.9X
maximal sum between zeros 5.024s 110 17m 27.023s 3.8X

eq(z) =z =Clz#C

cmp(m, y)=z=ylzFylz<ylz>ylz<ylz>y|eg(z)Aeq(y)
iE(z,y) :C’m‘y’zE x,y) + iE(z,y |mm x,y) ’ma:c z, ) |zte(cmp(x Y),iE(z,y),iE(z,y))
zE+<<x 0),2) = et w = iB(w.2). (. By, )
2 . . . .
iB”((z,y), (2,w)) =ite(emp(z, 2), (iB(z, 2), iE(y, w)), (iE(z, 2), iE(y, w)))

Prefit oy () = eq(x)
sum(z,y) = ( y)
upd((z,y), 2) =iB" ((2,y), 2)
merge(ry,...,2,,) =m ‘ (21 4. . 4 @) | min(zy,. ..,
merget (Ay,..., Ap) =h(f(append(Ay,..., An)))

fold(iE?,

(C,CY, append(Ay,. .

| h((merge(Ay[1],.. .,

Ton) | maz(z1,. ..

s Tm)

Ap[1]), merge(Aq[2],. . ., Am[Q])>) ’

wAm))

Figure 13: Grammars for template generation.

respectively. Unlike B1 and B2, the order of segments (ex-
cept “equality of elements”) must be preserved. Intuitively,
the implementation of function upd seeks to bind a partic-
ular suffix with a particular prefix; and if the correspond-
ing segments are not consecutive, then the synthesized par-
allelization would give incorrect results.

9.2 Templates

Fig. 13 shows the grammars for the template generation that
are currently implemented in GRASSP. These templates en-
able synthesis of all programs from our benchmark set with-
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out extra help from the user. However, in order to speed
the synthesis up, the user might empirically restrict some of
the templates, thus strangulating the search for the particular
tasks. In the rest of the subsection, we report on our experi-
ence with creation of the templates, that the user can follow
in order to create own ones.

For benchmarks from B1 and B3, types D, In, and Out
are instantiated to integers, and function  is simply the iden-
tity. Thus, all is needed for GRASSP is to consider triv-
ial merge functions for integers (merge in Fig. 13) which



Table 2: Hadoop performance on some GRASSP solutions.

Name Running Time in 10 nodes (sec.) Speedup (X)
average integer value 912 9.01X
counting all elements 803 9.65X
counting under a condition 862 9.36X
counting maximal elements 899 9.09X
counting minimal elements 935 8.78X
maximal element 899 9.24X
maximal element 918 8.8X
minimal element 821 10.09X
search for an element 904 8.89X
second maximal element 855 9.74X
sum of elements 802 10.3X
sum of even elements 860 9.7X
max / min delta 945 8.82X
equality among elements 883 9.26X

contain number of elements, summation, min / max element
computation.

For benchmarks from B2 and B4, type D is composed of
two or more integers, requiring the merging of states to be
more complicated (merget in Fig. 13). For instance, for
benchmarks of types “second maximal” or “counting distinct
elements”, the partial states are arrays themselves. GRASSP
attempts appending those arrays first; and then processes the
resulting array similarly to the specification (i.e., using f
and h). For benchmarks of types “average value”, “delta be-
tween”, or “equal numbers”, the final state is obtained by ap-
plying a trivial merge separately to sequences of the first and
the second elements of partial states, and then by applying
a given function h. Finally, the merge template for bench-
marks “counting minimal / maximal elements” requires syn-
thesizing and applying its own fold function.

For benchmarks from B4, we designed prefic .4
sum, and upd. It is sufficient for predicate prefix.,,q
to be either equality or disequality of an element to some
constant. Recall (Sect. 6.3) that prefiz,,, is the building
block for split, i.e., it is iteratively applied while traversing
prefixes. Type D', required for sum and wupd, is integer,
thus the templates gather various combinations of (possibly
nested) operations from linear integer arithmetic. In our ex-
perience, most of the synthesized sum and upd functions
have the form of nested ite-operations.

9.3 GRASSP Performance

We ran GRASSP on a Mac machine, 2.7 GHz Intel Core
i7 with 16 GB 1600 MHz DDR3. For all considered serial
benchmarks, GRASSP gradually synthesized parallel ver-
sions. The typical synthesis time ranged from 1 to 11 sec-
onds. GRASSP found appropriate templates from our pre-
defined template library (see Sect. 9.2) and completed them.

9.4 Parallel Code Performance

GRASSP code is sufficiently general to be ported onto dif-
ferent platforms and to exploit benefits on different hard-
ware. We present two case studies, for multithreading in C++
and MapReduce-like jobs in Hadoop.
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Multithreading in C++. The code generated by GRASSP
was translated into C++ that uses POSIX Threads library.
For efficiency, it exploits demand paging via memory-
mapped file I/O which allows the quick handling of large
quantities of data. Note the gap between GRASSP synthe-
sized code, that uses arrays, and the running code in C++
that performs “reading-and-processing” on the fly.

For compilation, we used LLVM clang-700 with -O3
optimizations (for both serial and parallel code);' for run-
ning, we used 8 threads (2 physical cores). As shown in
Table 1, we found an up to 5X speedup when running the
parallel code against serial code over the same amount and
distribution of data (including reading). The experiment
confirms that parallel disk (in our case, SSD) reads help
for the I/O-bound problems. When the files are mmapped,
reading them on eight threads improves the read bandwidth
from 55MB/sec to 280MB/sec. Non-mmaped implementa-
tion does not benefit from parallel reads. We also tried the
strategy of opening in parallel eight mmaped files, followed
by a serial read of these files in single thread, but this did not
lead to speedup.

One exceptional benchmark was “counting distinct ele-
ments”, which outperformed the serial code for 14.5X. How-
ever, the speedup exceeded the theoretically calculated max-
imal one for eight threads. The serial code handled an in-
termediate data structure for storing the distinct elements,
whose size was calculated once all segments were processed.
Notably, adzading an element to the intermediate data struc-
ture proved computationally expensive: it required searching
to determine whether the element was already added to the
data structure. Obviously, the total number of iterations in
the serial code depends on the order of segments: imagine
the case where the first segment has a thousand of distinct
elements, but other segments have just one. In the paral-
lel code, such intermediate data structures are local to each
thread and therefore can be populated faster than the shared
one. Thus, the observed 14.5X speedup was not due only to
parallelism, but to the more successful algorithm delivered
as a by-product of our parallelization.

MapReduce jobs in Hadoop. We show that the code gen-
erated by GRASSP can be translated into tasks for MapRe-
duce framework if the order of processing data segments
is not crucial. We evaluate the subset of our benchmarks
that fulfill this requirement (mostly from groups Bl and
B2) using a 10-node cluster of Amazon EMR m3.xlarge in-
stances. The cluster uses the Hadoop Distributed File System
(HDFS) to store input files of 200 GB. Table 2 summarizes
a performance gain after switching from serial versions on
one node to the corresponding parallel versions on 10 nodes.
When the parallel code was delivered by GRASSP and was
translated to Hadoop, we re-ran the experiment to fully ex-

1 Our experimental setup for running the parallel code was chosen inten-
tionally to be the same as for synthesis to demonstrate that synthesis can be
performed by arbitrary users on ordinary machines.



ploit the data parallelism. As shown in Table 2, we found an
up to 10X speedup in this setting.

10. Related Work

The problem of parallelizing recurrent programs dates back
to The 1970s [16]. Today, from purely mathematical solu-
tions, parallelizing matured to address large-scale industrial
applications within MapReduce [5], Dryad [14], Spark [34],
and Hadoop [33]. These distributed programming platforms
are unfortunately unable to automatically parallelize serial
code: they require users to write the code for both mappers
and reducers. To automatically generate MapReduce pro-
grams, [24] proposes to translate serial code into parallel
one based on a set of rewrite rules. Alternatively, MapRe-
duce program synthesis can be driven by input/output exam-
ples [27].

The closest work to GRASSP is [25]. It considers the
same type of parallelism as GRASSP, and it also uses sym-
bolic summaries over the data segments processed in run-
time. In contrast, GRASSP produces summaries at compile
time and on demand, if the worst-case scenario happens,
letting the other cases use simpler solutions. Finally, since
GRASSP delivers the code itself (as opposed to [25]), it can
be reused to process other data inputs.

In our previous work [7], we also performed synthesis
in stages, but ignored the most problematic case, in which
prefixes span the entire segments. Current work subsumes all
the contributions from [7] and adds: (a) gradual synthesis of
sum and update functions, (b) certification of the solutions
with constrained Horn solving, and (c) extensive evaluation
of the solutions using C++ multithreading and Hadoop tasks.

The most recent approach to synthesis of parallel code [6]
proceeds similarly to GRASSP, by discovering so called
auxiliary accumulators which play the role of sum functions
and enable parallelizing challenging tasks. Despite looking
at the parallelization scenario from a different angle, the
authors managed to end up with the results consistent to
ours. On the technical level, GRASSP differs from [6] in the
way it proves soundness of the solutions: it uses an invariant
synthesizer, while [6] uses a deductive verifier.

Other approaches to parallelization include Specula-
tion [15, 20, 23], which does not scale for applications on
large data. The kind of parallelism useful in regular ex-
pression matching [29, 32] and SAT solving [12] is run-
ning multiple inputs in parallel (in contrast to single in-
puts for GRASSP). Some work was proposed to parallelize
FSMs [22] by enumerating transitions from all possible
states on each input symbol. While the tasks supported by
GRASSP can also be viewed as parallelizing FSMs, most of
them use counters, making the approach by [22] inapplica-
ble.

Recently, synthesizing programs by examples (PBE)
proved extremely successful; see: [1, 2, 10, 11, 27]. Since
these applications do not require explicit specification (un-
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like GRASSP), PBE is orthogonal to our synthesis approach.
However, one can still find a connection between bounded
synthesis and PBE. Indeed, given a bound n, GRASSP im-
plicitly considers all possible examples in which arrays of
length & < n constitute the inputs and the serial-code’s re-
sults constitute the outputs; and then it delivers the parallel
code that obviously matches all those examples.

Automated formal methods are now influencing paral-
lel and array-handling computing: [3] studies the commu-
tativity problem of MapReduce, and [4] proposes an ap-
proach to prove counting properties in unbounded array-
handling programs. In the future, it would be interesting
to explore the role these recent verification methods can
play in our synthesis engine. Finally, equivalence checking
is one of the most intriguing branches of formal methods
(e.g., [8,9, 18, 19, 21, 26]). Orthogonally, GRASSP targets
the construction of parallel programs that are equivalent to
serial ones. We believe that recent advances in unbounded
equivalence checking may open new dimensions in program
synthesis and automatic parallelization.

11.

In this paper, we addressed the challenge of parallelizing
serial code that operates on big data. Our novel approach,
GRASSP, applies to cases where data is partitioned into
a sequence of segments, each segment is processed sepa-
rately, and partial outputs for the segments are merged to-
gether. GRASSP automatically rewrites the existing serial
code such that the decomposition of data dependencies in
loop iterations becomes easy. For this, it gradually considers
several parallelization scenarios and attempts to find easier
solutions first.

We are approaching the goal of automated paralleliza-
tion through formal verification and synthesis: numerous in-
gredients of parallel code can be discovered using SMT-
based synthesis techniques. We proposed a way of using
constrained Horn solving to certify results of bounded syn-
thesis and evaluated GRASSP on various classes of single-
pass array-processing programs. We showed that the parallel
results can achieve up to linear performance speedup relative
to serial code.

Conclusion
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