
Optimizing Data-Intensive Applications Automatically By
Leveraging Parallel Data Processing Frameworks

Maaz Bin Safeer Ahmad
University of Washington

Seattle, USA
maazsaf@cs.washington.edu

Alvin Cheung
University of Washington

Seattle, USA
akcheung@cs.washington.edu

ABSTRACT
In this demonstration we will showcase Casper, a novel
tool that enables sequential data-intensive programs to au-
tomatically leverage the optimizations provided by paral-
lel data processing frameworks. The goal of Casper is to
reduce the inertia against adaptation of new data process-
ing frameworks—particularly for non-expert users—by au-
tomatically re-writing sequential programs written in gen-
eral purpose languages to the high-level DSLs or APIs of
these frameworks. Through Casper’s browser-based inter-
face, users can enter the source code of their Java appli-
cations and have it automatically retargeted to execute on
Apache Spark. In our interactive presentation, we will use
Casper to optimize sequential implementations of data vi-
sualization programs as well as image processing kernels.
The optimized Spark implementations along with the origi-
nal sequential implementations will then be executed simul-
taneously on the cloud to allow the demo audience compare
the runtime performances and outputs in real-time.

1. INTRODUCTION
As computing becomes increasingly ubiquitous, storage

cheaper, and data collection tools more sophisticated, more
data is being collected today than ever before. Data-driven
advances are increasingly prevalent in various scientific do-
mains. As such, effectively analyzing and processing huge
datasets poses a grand computational challenge.

Many parallel data processing frameworks have been de-
veloped to process large datasets, and new ones continue
to be released. Such frameworks often come with domain-
specific optimizations that are exposed either via library
APIs or high-level domain-specific languages (DSLs) for de-
velopers to express their computations. The goal is to free
the developer from worrying about low-level details such as
specifying communication and partitioning data across ma-
chines. The resulting computations are made efficient due
to the highly optimized domain-specific implementations of
the framework.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056440

However, leveraging such frameworks for large-scale data
analytics is often not an easy task. First, choosing the appro-
priate framework to deploy a given workload requires deep
understanding of the optimizations provided by each frame-
work. Second, users must learn the new APIs or DSLs and
often rewrite existing code before they can leverage the ben-
efits provided by these frameworks. Doing so requires not
only significant time and resources but also risks introduc-
ing new bugs into the application. Moreover, even if users
are willing to rewrite their applications, they must first un-
derstand the intent of their code, which might have been
written by others who were targeting a different framework
in the past. And manually written, framework-specific opti-
mizations embedded in existing code often obscure high-level
intent. Finally, even after learning new APIs and rewrit-
ing code, newly emerging frameworks turn freshly rewritten
code into legacy applications. Users must then repeat this
process to keep pace with new advances, requiring significant
time investments that could be better spent in developing
new applications instead.

One way to improve the accessibility of parallel data pro-
cessing frameworks is to build compilers that convert appli-
cations written in common general-purpose languages, such
as Java or Python, to high-performance parallel processing
frameworks, such as Hadoop or Spark. Such compilers allow
users to write their applications in familiar general-purpose
languages and the compilers parallelize their computation
by retargeting portions of their code to high-performance
DSLs [11]. Unfortunately, such compilers don’t always ex-
ist, and building one is highly non-trivial given the varying
APIs and DSLs offered by different frameworks, and the
large number of frameworks available.

In this demonstration, we present Casper [1], a compiler
that uses verified lifting [5, 8] to automatically convert se-
quential code fragments into the MapReduce paradigm [6].
Verified lifting is a general technique that converts code frag-
ments from one language to another by leveraging program
synthesis and verification to automatically find provably cor-
rect functional summaries. These summaries—expressed us-
ing a high-level specification language—encode the seman-
tics of the input code fragment, but strip away any domain-
specific optimizations. The search process for summaries is
completely automated without any predefined rules, as in
the case of a syntax-driven compiler. Once found, the sum-
maries (and thus the input code fragment) can be translated
to the target language using simple syntax-directed rules.

The general concept of verified lifting has been previously
applied to build compilers that convert Java code fragments

1675

http://dx.doi.org/10.1145/3035918.3056440

(a) (b) (c)

Figure 1: Casper’s Browser-Based Front-End

to SQL [5], and FORTRAN stencil kernels to the Halide
DSL [8]. In Casper, we employ verified lifting to convert
sequential code fragments written in Java into a high-level
functional language that describes the computation using
the MapReduce paradigm. By doing so, we enable sequential
Java programs to leverage the various optimizations offered
by data parallel processing frameworks that implement the
MapReduce paradigm (e.g., Hadoop, Spark, etc). While
our current prototype targets Apache Spark, our underlying
technique is general enough to be used for other backends.

Our demonstration will enable attendees to experience
the simplicity of optimizing programs using Casper and
assess its capabilities and limitations. We will use Casper’s
browser-based interface to retarget data visualization queries,
as well as an image processing kernel. Furthermore, atten-
dees will be invited to make changes to the available bench-
marks or write their own functions. To judge the quality and
correctness of the translation, users can manually examine
the generated Spark code or simply execute both implemen-
tations (original and optimized) simultaneously on a cluster
to compare their performance and outputs.

2. DEMONSTRATION DETAILS
Our demonstration of Casper consists of two phases,

where each phase involves optimizing a different data inten-
sive application. The applications were manually selected to
present the unique challenges for the system and encourage
audience participation.

2.1 Data Analytics and Visualization
In this phase of the demonstration, we act as a data scien-

tist studying the Yelp dataset and generating visualizations
from it. The Yelp dataset consists of millions of reviews and
hundreds of thousands of customer and businesses records.
To help the users get started, we have pre-coded two simple
programs for the users to optimize and run:

• Program 1 counts the number of restaurants in the en-
tire dataset that serve breakfast, brunch, lunch, din-
ner, late-night and dessert. The output of this program
is visualized as a Radar graph (see Figure 1c).

• Program 2 counts the number of businesses with a 4-
star rating or higher, grouping the results by city. The
output of this program is visualized as a heat map.

As a program is being translated, users will be able to ob-
serve the different iterations our synthesis algorithm goes

through as it searches for the optimal rewrite (Figure 1a).
Once the compilation is complete, the new version of the
program, parallelized using Apache Spark, will be displayed
to the users (Figure 1b). The users can then select the ap-
propriate dataset to run the benchmark on and click execute.
This will compile both sequential and optimized versions of
the program and send them to our remote clusters to be ex-
ecuted. As soon as the output from either implementation
is ready, it will be displayed to the users in the form of a
visualization (see Figure 1c). The time taken for each imple-
mentation to finish will also be reported to the users. In our
experiments, we found that the optimized implementations
of Yelp queries running on our cluster, executed roughly 17×
faster (over a 75GB dataset) than the sequential implemen-
tations running on a single node.

Users will have the freedom to edit the provided queries
or write their own queries for the dataset. Code for both
parsing the dataset and generating visualizations has been
written into our system, therefore the users are required to
program only the actual analytics they want. Users will
also have the chance to study the format of the data they
are working with using a small sample of the original log.

2.2 Image Processing
In the second phase, we will optimize an application of

a different flavor to challenge Casper. The users will be
provided a pre-written image processing benchmark which
takes a stream of images and blurs consecutive images to-
gether using a fixed-sized window.

The goal for this session is to provide a different challenge
for the compiler and demonstrate that Casper can be used
for a wide array of applications. The input to the bench-
mark is an array of images, where each image is stored as
a flattened 1-D array of RGB tuples. The code iterates the
data via two nested loops: the outer loop iterates each pixel
index, while the inner loop iterates all images in the current
window. The inner loop computes the sum of RGB values
in each image for the current pixel index. The outer loop
uses the computed sum to calculate the average RGB values,
which are then used as the pixel values for the output image.
The presence of nested loops requires Casper to synthe-
size multiple loop invariants and postconditions (see §3.3).
Moreover, the optimal Spark solution requires more than
two MapReduce operations. All these factors contribute to
making the synthesis problem harder.

The users will follow the same instructions to compile

1676

Figure 2: Casper’s deployment

the benchmark and run the implementations on our images
dataset. The images dataset contains a small number of
very large images that must all be blurred together. The
final blurred image is displayed to the users when the bench-
mark finishes. According to our experiments, users should
experience a 9× performance boost on the 75GB dataset.

3. SYSTEM OVERVIEW
In this section, we present an overview of Casper’s de-

sign and briefly discuss the methodology used to translate
sequential code fragments to the MapReduce paradigm (and
ultimately Spark code).

3.1 System Deployment
As shown in Figure 2, Casper is deployed as an online web

service, accessible through a RESTful JSON API. The user
interacts with the browser-based front-end (see Figure 1)
that we have developed for the web service. Once the users
submit their code through the webpage, it is sent to the
Casper compiler where it is translated to Spark. The con-
sole output generated by the compiler is printed back to the
user in realtime to help them debug their applications and
track the compilation process (see Figure 1a).

Once (and if) the compiler has successfully translated the
code, the retargeted version of the program is sent back to
the user for review (see Figure 1b). For the demonstration,
we will set up an AWS cluster used to run the Spark im-
plementations using 10 m3.2xlarge instance nodes running
Spark 2.0.1. The sequential version is run on a separate
m3.xlarge machine simultaneously. All datasets accessed by
the programs are stored on the cluster HDFS. Once the out-
put of the applications is ready, it is printed back to the
user. (Figure 1c).

3.2 System Architecture
Figure 3 shows the overall architecture of Casper. The

input to Casper is Java code that iterates data sequentially.
As output, Casper generates an updated version of the orig-
inal program where the translated code fragments have been
replaced with semantically equivalent Spark tasks.

The first component in the compilation pipeline is the
Program Analyzer. It parses the input code into an Ab-
stract Syntax Tree (AST) and automatically identifies loop
nests that iterate over data as candidate code fragments for
translation. Once such code fragments have been identi-
fied, each of them is individually examined through static
program analysis to generate a synthesis specification. The

Figure 3: Casper System Architecture.

synthesis specification defines both the space of high-level
MapReduce representations to search from and the verifica-
tion conditions that a candidate MapReduce representation
must satisfy to preserve the semantics of the original code.

The Summary Generator module uses a program syn-
thesizer called SKETCH [12] to find (i.e. lift) semanti-
cally equivalent MapReduce representations of the input
code fragment (also referred to as summaries of the code
fragment). Casper currently uses the Dafny [9] theorem
prover to confirm that the lifted result is sound, i.e., the
generated summary and the original input code fragment
are semantically equivalent for all possible program execu-
tions. Since a sequential program may have more than one
valid MapReduce representations, a cost model is used to
select the best one. §3.3 discusses the synthesis process in
greater detail.

Finally, the Spark Code Generator uses the optimal MapRe-
duce representation to generate syntactically correct Apache
Spark code. This is achieved through relatively straight-
forward syntax directed rules. The code generator also gen-
erates a new version of the original program where the suc-
cessfully translated code fragments have been replaced by
the generated Spark code. The code generator is also re-
sponsible for generating any supplementary code necessary
to incorporate the generated Spark job back into the original
program, such as creating a Spark context.

3.3 Methodology
The translation of sequential Java code to Spark is done

in two distinct stages: first, the input code is lifted, through
synthesis, into a high-level MapReduce specification lan-
guage. Then, simple re-write rules are used to generate code
from the specification language to the target language (in
this case Spark). Inferring program semantics in a custom
intermediate language rather than the target DSL directly
enables us to make synthesis more efficient, and allows easy
extension of support to other data processing frameworks.

MapReduce Specification Language: The goal of ver-
ified lifting is to generate a summary of the selected code
fragment. The summary must correctly capture the behav-
ior of the code by specifying how the program state is ma-
nipulated as the code executes. In Casper, the summaries
define the value of output variables in the form of functional
MapReduce primitives, such as flatMap and reduceByKey,
applied to the input data. The summaries can be seen as
postconditions of the input code fragment (i.e. logical ex-

1677

pressions that must be true after the input code fragment
terminates). The language has been designed such that any
postcondition expressed using it can be easily translated to
parallel data-processing frameworks (e.g., Spark) that im-
plement the MapReduce paradigm.

Verification: Given a specific code fragment and a can-
didate summary of the code, Casper must be able to prove
that the summary is a valid postcondition of the code frag-
ment. To do so, Casper employs the standard approach
of creating verification conditions based on Hoare logic [7].
Verification conditions are Boolean predicates which, given
a program statement s and a postcondition post, state what
needs to be true before s is executed. If the verification
condition holds for all possible program states, then the
postcondition post also holds. Verification conditions can
be systematically generated but require a sufficiently strong
loop invariants for each loop in the program. Since these
loop invariants are unknown to Casper, they must also be
synthesized.

Search Strategy: To infer these postconditions and loop
invariants, Casper uses Syntax-Guided Synthesis (SyGuS).
SyGuS takes as input a set of candidate postconditions ex-
pressed as a grammar, and a correctness specification for
the postcondition expressed as a logical formula. The goal
for the synthesizer is to construct a postcondition using the
provided grammar such that the formula evaluates to true.
By specifying a grammar that can only generate postcondi-
tions in our specification language, Casper ensures that any
synthesized postcondition will be easily translatable to the
target DSL. Once the synthesis problem has been defined,
Casper uses Counter-Example Guided Inductive Synthe-
sis (CEGIS) to solve the search problem. Once a solution is
found, and verified by Dafny, the search space is pruned—by
updating the grammar—to eliminate all candidate solutions
of equal or worse quality (as determined by our cost model)
after which the search is restarted to find a better solution
until the search space is exhausted.

4. RELATED WORK
Source-to-Source Compilers. Many efforts have been

made to translate programs directly from low-level languages
into high-level DSLs. MOLD [11], a source-to-source com-
piler, relies on syntax-directed rules to convert native Java
programs to Apache Spark. Unlike MOLD, we translate on
the basis of program semantics. This eliminates the need
for rewrite rules, which are difficult to generate and brit-
tle to code pattern changes. Many source-to-source compil-
ers have been built in other domains for similar purposes.
For instance, [10] evaluates numerous tools for C to CUDA
transformations. However, these compilers require manual
effort to annotate the original source code. Our methodol-
ogy works with code without any user annotation, and is
built upon our earlier work [1]. Unlike prior approaches in
automatic parallelization [2, 3], Casper targets data parallel
processing frameworks, and only translates code fragments
that are expressible in the DSL for program summaries.

Synthesizing Efficient Implementations Prior work has
used synthesis to generate efficient implementations and op-
timizing programs. [13] is the most recent research that at-
tempts to synthesize MapReduce solutions with user-provided
input and output examples. QBS [5] and STNG [8] both
use verified lifting and synthesis to convert low-level lan-

guages to specialized high-level DSLs for database appli-
cations and stencil computations respectively. Casper is
inspired by prior approaches in applying verified lifting to
construct compilers. Unlike prior work, however, Casper
addresses the problem of verifier failures and designs a cost
model to prune away non-performant summaries, with the
latter inspired by recent work on cost-based synthesis [4].

5. CONCLUSION
Casper aims to improve adaptation of new data process-

ing frameworks by automatically retargeting applications
written in general purpose languages to the high-level DSLs
provided by parallel data processing frameworks. In our
demonstration we showcase Casper’s browser-based inter-
face and have users parallelize data-processing applications
using Casper.

6. ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation through grants IIS-1546083, and CNS-1563788;
DARPA award FA8750-16-2-0032; DOE award DE- SC0016260;
and gifts from Adobe, Amazon, and Google.

7. REFERENCES
[1] M. B. S. Ahmad and A. Cheung. Leveraging parallel

data processing frameworks with verified lifting. In
SYNT@CAV, 2016.

[2] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
C. Tseng. An overview of the SUIF compiler for
scalable parallel machines. In PPSC, 1995.

[3] W. Blume, R. Eigenmann, J. Hoeflinger, D. A. Padua,
P. Petersen, L. Rauchwerger, and P. Tu. Automatic
detection of parallelism: A grand challenge for high
performance computing. IEEE P&DT, 2(3), 1994.

[4] J. Bornholt, E. Torlak, D. Grossman, and L. Ceze.
Optimizing synthesis with metasketches. In POPL,
2016.

[5] A. Cheung, A. Solar-Lezama, and S. Madden.
Optimizing database-backed applications with query
synthesis. In PLDI, 2013.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1), Jan. 2008.

[7] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–580, Oct. 1969.

[8] S. Kamil, A. Cheung, S. Itzhaky, and
A. Solar-Lezama. Verified lifting of stencil
computations. PLDI, June 2016.

[9] K. R. M. Leino. Dafny: An automatic program verifier
for functional correctness. In LPAR, 2010.

[10] C. Nugteren and H. Corporaal. Introducing ’bones’: A
parallelizing source-to-source compiler based on
algorithmic skeletons. In GPGPU-5, 2012.

[11] C. Radoi, S. J. Fink, R. Rabbah, and M. Sridharan.
Translating imperative code to mapreduce. In
OOPSLA, 2014.

[12] Sketch. https://people.csail.mit.edu/asolar/. Accessed:
2016-05-01.

[13] C. Smith and A. Albarghouthi. Mapreduce program
synthesis. PLDI, June 2016.

1678

https://people.csail.mit.edu/asolar/

	Introduction
	Demonstration Details
	Data Analytics and Visualization
	Image Processing

	System Overview
	System Deployment
	System Architecture
	Methodology

	Related Work
	Conclusion
	Acknowledgments
	References

